
RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 1

intan
TECHNOLOGIES, LLC

 RHD

 STM32 Firmware Framework

Version 1.0
6 December 2023

Features
♦ Open-source STM32 firmware written in C to stream

real-time data from Intan RHD2132 or RHD2216
electrophysiology amplifier chips.

♦ Optimized SPI communication between STM32 MCU
and Intan RHD chip.

♦ Interrupt-based code using DMA (direct memory
access) allows for sampling rates up to 20 kSamples/s
per channel for 32 channels.

♦ Both HAL and LL libraries included.
♦ STM32U5 family supported.

Applications
♦ Rapid prototyping of Intan Technologies RHD amplifier-

based products
♦ Starting point for the development of custom interfaces

to RHD2132 or RHD2216 chips

Description
To facilitate the development of electrophysiology
recording systems using the RHD series of microchips,
Intan Technologies provides the following open-source
STM32 firmware framework for developers. The
framework consists of C code written for the commercially-
available STM32U5 microcontroller family from
STMicroelectronics. The example code streams multi-
channel data from an Intan RHD2132 chip at sample rates
up to 20 kSamples/s per channel using timers, interrupts,
and DMA to maintain high throughput while using only a
small fraction of the MCU capacity.

All Intan example code described in this document was
developed on the inexpensive STMicroelectronics
NUCLEO-U5A5ZJ-Q development board, which is
available from many electronics distributors including
DigiKey, Mouser, and Newark. Intan Technologies
does not sell any MCU development boards.

intan
TECHNOLOGIES, LLC

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 2

intan
TECHNOLOGIES, LLC

Why Is This Code Specific to the STM32U5?
There are several families of STM32 microcontrollers with a very wide range of specifications suitable for different applications.
The example code we provide here for the STM32U5 series is not an indication that only the STM32U5 chips will be the best fit
for all projects using Intan chips. However, there are some specific advantages that the U5 family has over other STM32 series
that make it a reasonable starting point for working with Intan chips.

The U5 series was launched in 2021 and is currently the most cutting-edge evolution of the well-established L series. It targets
ultra-low power applications while still providing a maximum CPU clock rate of 160 MHz and robust peripheral support. High-
speed processing and SPI data transmission / reception are the most important features for achieving high sample rate / high
channel count communication with Intan chips, and while we have not quite been able to reach the maximum data rate the Intan
RHD2132 chip is physically capable of supporting (30 kS/s for 32 amplifier channels + 3 auxiliary commands), we have gotten
quite close (20 kS/s) with relative ease, using both the HAL (Hardware Abstraction Layer) and LL (Low Layer) drivers. The U5
series is should be sufficient for basic data acquisition from a single RHD2132 or RHD2216 chip and transmission of that data
over a USART interface. Even those applications requiring a high sample rate will likely be able to achieve this by optimizing the
interface to omit unnecessary features.

The most important features of the STM32U5 used in the Intan RHD firmware framework are SPI (Serial Peripheral Interface),
timer-generated interrupts to achieve a reliable sample rate, and DMA (Direct Memory Access) to allow multi-word SPI
transactions to occur without requiring direct processor intervention. Most applications will also require some way to transmit
acquired data somewhere or save it to memory, so peripherals for interacting with USART, Ethernet, wireless systems, or SD
cards, etc. will probably be useful.

SPI Communication Requirements

A critical signal in the Intan SPI communication protocol is CS (active-low chip select, called NSS in the STM32) rising high,
remaining high for at least 154 ns, and then falling low between each 16-bit word. Unfortunately, the popular STM32F4 series
SPI bus does not appear to have an easy way to achieve this behavior. NSS is indeed driven low during each 16-bit word, but
NSS is not toggled high between words, so the RHD chip does not receive the clear NSS/CS high signal indicating the end of
a 16-bit word.

This NSS/CS pulse between every SPI word is required for the RHD chip to operate correctly, so for the STM32F4 chips we are
forced to decouple NSS from the SPI peripheral and instead use a GPIO pin for CS. Unfortunately, this requires direct processor
intervention between every 16-bit word to write CS high, wait, and then write CS low again. This does allow the RHD chip to
communicate properly, but it wastes CPU clock cycles, and prohibits the use of DMA for bulk data transfers. While this approach
may be feasible for relatively low sample rates (5 kS/s or lower), it is inefficient and limits the communication between the MCU
and the Intan chip. This manual control of NSS/CS is necessary for the F4 family and other STM32 families with similar SPI
buses. (In theory it is possible to use a precisely-set timer tied to CS that is somehow synchronized with the SPI bus to
automate CS toggling, but this complicates the SPI communication beyond the scope of entry-level demonstration code.)

The SPI bus implementation details can differ quite significantly between microcontroller family and manufacturer, so we strongly
encourage users research their proposed MCU’s SPI implementation to ensure this or similar shortcomings do not hinder or
complicate data transfer with the RHD chip. We have verified that the STM32U5 and STM32H7 series have SPI buses that can
easily be used with NSS automatically pulsing high between 16-bit words, and these families also work nicely with DMA for large
data transfers.

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 3

intan
TECHNOLOGIES, LLC

Overview of Program Flow
This Intan STM32 example code was developed using STM32CubeIDE, and uses HAL or LL drivers (this can easily be changed
by the user) to configure and control various peripherals.

The code first configures and initializes the MCU peripherals with various auto-generated functions, which the STM32CubeIDE
environment creates based on various settings in the .ioc file. Parameters for configuring the RHD2132 chip are then used to
determine values for each of the RHD registers, and these are written to the chip using WRITE commands over the SPI bus. A
list of 32 CONVERT commands (one for each channel of an RHD2132 chip) and a list of three auxiliary commands (one of which
continually re-writes the above-determined register values to the RHD chip) are created and stored in memory as
command_sequence_MOSI for later use. The green LED is illuminated to indicate when data acquisition starts, and a timer
interrupt is enabled. By default, this interrupt should trigger every 8000 clock cycles at 160 MHz, which is 20 kHz. We will refer
to this timer period as the sample period. The program this enters a data acquisition loop.

This data acquisition loop will only break when the loop_escape() function returns 1, which will not occur until the number of
acquired samples reaches 20000, meaning one second of data has been acquired. Until that time, this main loop will repeatedly
write a dedicated pin Main_Monitor_Pin high, which can be used to monitor when this main loop is processing. (Other functions
that trigger due to interrupts will keep this pin low for the duration of their execution). Because timer interrupts had just been
enabled, this loop will consistently pause every sample period to execute TIM_interrupt_routine().

The TIM_interrupt_routine() function executes once per sample period and begins sending a sequence of SPI commands. By
default, this function sends 35 commands: 32 CONVERT commands + 3 auxiliary commands, where each command is a 16-bit
SPI word. In addition to beginning the SPI transfer, this routine also writes the Main_Monitor_Pin low. (The main loop will write it
high once it begins executing again.) The function also writes a dedicated Interrupt_Monitor_Pin high only for the duration of the
function, and does some error checking. The SPI transfer uses DMA to iterate through the full 35-command list and this routine
only begins the transfer, so by the time the routine finishes the 35-command sequence will have only just begun.

An important detail of TIM_interrupt_routine() is that it checks to make sure that the previous SPI sequence is complete; if the
variable command_transfer_state (discussed below) is still TRANSFER_WAIT from the previous sequence, then the critical
ITClip error has occurred. This error, as well as methods to avoid it, are discussed in more detail later. Briefly, this error
indicates that the sample period is shorter than the time required for each SPI sequence, so every sample period the next
sequence is being triggered before the previous one finishes. This can be solved by extending the sample period (i.e., using a
lower sample rate) or speeding up each SPI sequence (e.g., sample fewer channels, use fewer AUX commands, or speed up the
SPI transfer itself, if possible).

Eventually, one complete SPI transfer sequence will end. The exact way this is detected varies slightly based on whether LL or
HAL drivers are used, but in both cases an interrupt triggers the function SPI_TxRxCpltCallback(). The write_data_to_memory()
function is then executed, which is a user-changeable function that by default writes the result of a single CONVERT command
(i.e., a sample from a single channel) to memory. Then, transmit_data_realtime() is executed, which is left blank in our example
code, but is where the user could choose to implement some data transfer (for example using USART) to send out the MISO
results from the now-finished command sequence before the next sample period overwrites the results. The variable
command_transfer_state is changed; it is set to TRANSFER_WAIT once the transfer begins, TRANSFER_COMPLETE once the
transfer finishes, and TRANSFER_ERROR if some error was detected.

The main loop will continue to run, pausing for an interrupt every sample period, until loop_escape() returns 1. If the user
changes loop_escape() to always return 0 then this will never occur, so the program will simply continue looping with occasional
interrupts. This would be suitable behavior for long-term data acquisition that is not directly saved to memory, but transmitted
elsewhere in real time every sample period. Our simple example code is set to escape the loop after one second of data
acquisition and disable further timer interrupts.

Next, the user-changeable function transmit_data_offline() is called, which by default sends the 20000 accumulated samples
from a chosen channel out via USART in a single bulk transfer. (Implementing real-time transfers would require many smaller
transfers to be made continually.) Note that the on-chip memory limitations of the STM32 will not allow for long recordings,
especially at high sample rates and channel counts, unless the data is transmitted elsewhere.

Finally, the green LED is switched off, indicating both data acquisition and transmission have completed, and the program enters
a final infinite loop.

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 4

intan
TECHNOLOGIES, LLC

I/O Pins
This example code was developed on an STMicroelectronics NUCLEO-U5A5ZJ-Q development board. The I/O pins were
chosen to be easily accessible when using board. Any changes to I/O pin assignments should be made through the
rhd_acquisition.ioc file.

SPI Bus (SPI3)

NSS (CS): PA4

SCK (SCLK): PC10

MISO: PC11

MOSI: PC12

LEDs

LED_GREEN: PC7

LED_RED: PG2

Monitor Pins
Interrupt_Monitor: PD9 (This pin is written high each sample period, so its frequency represents amplifier sample rate.)

Main_Monitor: PC8 (This pin is written high as long as main loop is processing, so its duty cycle approximates free
CPU clock cycles that could be used for other processing tasks.)

ErrorCode_Bit_3: PE0

ErrorCode_Bit_2: PG8

ErrorCode_Bit_1: PG5

ErrorCode_Bit_0: PG6

Connecting an Intan Chip
This example code was designed to work with an Intan RHD2132 32-channel amplifier chip. The RHD2216 chip can also be
used, but unless the code is modified, half of the CONVERT commands per sample period will not correspond to real channels.
The RHD2164 chip uses a non-standard double-data-rate SPI bus protocol, so connecting this chip to an STM32 would require
some external “glue logic” and significant changes to this firmware which we have not yet implemented. The RHS2116 chip uses
32-bit instead of 16-bit SPI words, so it also would require significant firmware changes which are planned for later release.

Intan headstages are set to communicate using LVDS (low voltage differential signaling) signals on the SPI bus, while most
microcontrollers use standard non-LVDS SPI signals. To connect an Intan RHD headstage to the STM32, you must either use
an Intan LVDS adapter board (part #C3490), or tie the LVDS_en pin on the RHD chip to ground to disable LVDS signaling. On
most Intan RHD headstages the LVDS_en pin is hard-wired to VDD and it is impractical to cut the trace, but in the C3335
headstage (which uses a RHD2132 chip with access to 16 of the 32 amplifiers), there is a zero-ohm resistor labeled R4 that can
be removed to set LVDS_en low.

Note that if LVDS signaling is disabled, standard CMOS signaling is used instead, which makes reliable transmission of high-
frequency data over long wires challenging due to signal reflections. For this reason, if LVDS is disabled, it is critical to keep the
SPI wires between the MCU and the RHD chip as short as possible, and/or reduce the SPI data transmission rate.

Another helpful accessory for development is an RHD SPI cable adapter (part #C3430), which plugs into the SPI connector on
an Intan headstage and breaks out each signal to a circuit board for easy soldering. Each of the twelve signals is assigned its
own hole for soldering, from B1 - B6 (bottom row) and T1 - T6 (top row). (The SPI cable adapter is not necessary if the LVDS
adapter board is used, because the LVDS adapter board includes an SPI cable connector.)

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 5

intan
TECHNOLOGIES, LLC

Assuming LVDS signaling is disabled and SPI signals are kept short, the following connections can be used along with the
example program to interface an STM32U5 with an RHD2132 headstage through an SPI cable adapter board. Note that with
LVDS disabled, all the (–) polarity signals are unused, and the (+) polarity signals carry the standard CMOS signal.

RHD SPI adapter board
pin number

Signal

STM32
pin number

B1 CS+ PA4
B2 SCLK+ PC10
B3 MOSI+ PC12
B4 MISO1+ PC11
B5 MISO2+ (unused) -
B6 VDD 3V3
T1 CS– (unused) -
T2 SCLK– (unused) -
T3 MOSI– (unused) -
T4 MISO1– (unused) -
T5 MISO2– (unused) -
T6 GND GND

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 6

intan
TECHNOLOGIES, LLC

Description of User-Changeable Sections of Example Code
The example code was designed with user modifications in mind. While users are free to modify any and all files, there are three
specific files that are intended to be modified to most effectively alter the program’s functionality: userconfig.h,
userfunctions.h, and userfunctions.c. Each of these files and the changes that may be made to them are discussed in detail
below. Note that the .ioc file, which governs pin and peripheral configuration, is not included here and should instead be
changed directly through STM32CubeIDE’s UI if the user wants to use different I/O pins, different peripherals, or different
parameters for those peripherals (e.g., to change SPI baud rate or timer-generated sample rate).

userconfig.h
The user changes in this file are parameters set with #define macros. These parameters are used throughout various files of
the project, but most aspects of the program that users will want to alter can simply be set here. For example, the number of
channels converted per sequence, how many samples to store in memory, and which channel should have its samples stored.
Those that require more involved changes (for example, sample rate) get further explanation in their sections.
 #define USE_HAL

If this line is left uncommented, the code is compiled for compatibility with HAL (Hardware Abstraction Layer)
drivers for all peripherals. It is important that if this is left uncommented, the user navigates to the
STM32CubeIDE IOC viewer -> Project Manager -> Advanced Settings, and confirms that all the peripherals
that are directly used in user code (GPIO, GPDMA, USART, TIM, SPI) are set to HAL. In contrast, if this line
is commented out, the code is compiled for compatibility with LL (Low Layer) drivers, and these peripherals
should all be set to LL instead.

In general, HAL drivers are more user-friendly, simple to work with, and largely compatible even across
different STM32 series. LL drivers require more device-specific implementation of basic functions, and are
closer to direct manipulation of registers, so the code using LL tends to be more complex but specialized to
the chip, typically boosting performance.

 #define ERROR_DETECTED_PORT LED_RED_GPIO_Port

 #define ERROR_DETECTED_PIN LED_RED_Pin

These two lines specify the port and pin address of the “Error Detection” pin. By default, this is set to the pin
that routes to a red LED on the Nucleo board. If another pin is desired to be used instead, that pin’s Port and
Pin addresses should be changed here.

 #define CONVERT_COMMANDS_PER_SEQUENCE 32

This line specifies that for every sample period, 32 CONVERT commands will be sent within a single
sequence. The order of these CONVERT commands can be customized in configure_convert_commands()
in userfunctions.c, but if left unchanged, this will be channels 0-31 in ascending order.

 #define AUX_COMMANDS_PER_SEQUENCE 3

This line specifies that for every sample period, after the CONVERT commands, three auxiliary commands
will be sent within a single sequence. The contents of these auxiliary commands can be customized in
configure_aux_commands() in userfunctions.c, but if left unchanged, this will have command 1 cycle through
all RHD registers, re-writing each according to software-configured values, and commands 2 and 3 simply
repeat dummy READ commands on ROM registers.

The total number of commands sent in a sequence of a single sample period is
CONVERT_COMMANDS_PER_SEQUENCE + AUX_COMMANDS_PER_SEQUENCE. By default, this is
32 + 3 = 35, so at every period of 1 / SAMPLE_RATE, there will be a sequence of 35 individual 16-bit SPI
command words.

 #define AUX_COMMAND_LIST_LENGTH 128

This line specifies how many auxiliary commands are contained in a single auxiliary command list. Each of
the AUX_COMMANDS_PER_SEQUENCE (by default three) has its own slot, and every sequence iteration
(which happens once per sample period), all slots advance by one through their lists. Once the end of the list
length (dictated by this parameter) is reached, all lists are reset to zero, and the next sequence all slots will

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 7

intan
TECHNOLOGIES, LLC

begin at the beginning of their list. In the default example, slot 0 reprograms most of the RHD RAM registers.
Because all lists are 128 commands long, when a specific write occurs it can be expected that exactly 128
samples later, that write will be repeated during the next cycle of the aux command list.

Note that all auxiliary commands will have this same length, with the exception of Zcheck_DAC command
lists, which have variable lengths because different DAC output signal frequencies will require different
numbers of commands. Progress through these command lists is tracked separately, and will loop back to
the start at some variable rate depending on frequency. All other command lists will loop back to their start
every AUX_COMMAND_LIST_LENGTH number of samples.

 #define SAMPLE_RATE 20000

This line specifies the sample rate in Hz of all amplifier channels on the chip. This parameter is used when
determining suitable RHD register values for initial configuration, as some register fields like ADC buffer bias
and MUX bias have optimum values that vary with sample rate. Note: Changing this value here alone does
not change the actual sample rate of the example program. The sample period is governed by the TIM3
peripheral, specifically the clock input it receives and the counter period set in the .ioc file. The system clock
speed of 160 MHz is divided by the counter period of 8000, resulting in the timer issuing an interrupt at the
desired 20 kHz. If a different sample rate is desired, it must be changed through the .ioc file by
altering the TIM3 counter period, not just setting this #define here.

 #define SAMPLES_IN_MEMORY 20000

This line specifies how many samples are stored in memory before the main data acquisition loop is
escaped. By default, once 20000 samples from a single channel have been acquired, the main loop exits,
and acquisition stops. Those 20000 samples will then be transmitted off-chip via USART before the program
terminates. With the default SAMPLE_RATE of 20000, this corresponds to one second of data acquisition.
On-chip RAM is limited, so setting this number excessively high will cause the chip to run out of memory
during program execution.

 #define SELECTED_CHANNEL 8

This line specifies which of the 32 RHD amplifier channels is selected to have each sample stored in memory
and ultimately transmitted via USART. The choice of amplifier 8 is arbitrary; any of the channels 0-31 can be
used. While all 32 channels are sampled, with each receiving its own CONVERT command once per sample
period, only this single specified channel has its samples written to memory. If multiple channels are instead
desired, the user should alter the write_data_to_memory() function within userfunctions.c.

userfunctions.h

This header file contains the declarations of all functions in userfunctions.c, but also a few static inline functions that are short
and simple enough to go directly in this .h file. Each of these functions is discussed below.
 static inline void enable_interrupt_timer(int enable)

This function is called directly before the beginning of the main acquisition loop, with enable = 1, and directly
after the end of the loop, with enable = 0. The function either starts or stops the timer and its ability to issue
an interrupt when the timer reaches its target counter value. The exact implementation differs based on HAL
and LL drivers, but generally the same behavior is achieved.

Users are not likely to change this function unless drastically changing how timers are used to generate
interrupts.

 static inline void send_convert_commands()

This function sends all CONVERT commands present in command_sequence_MOSI one-by-one via
individual SPI transfers. Note that these SPI transfers are not optimized for speed (using DMA or interrupts),
but just poll until they’re complete. These are not efficient for high-performance transfers (see the our use of
DMA to achieve these transfers more efficiently) but provide the most straightforward, basic way of sending
polling SPI transfers. This function is not actually used in this example, as instead CONVERT commands
are transferred via DMA, but it can be used with the knowledge that performance and efficiency will be
reduced.

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 8

intan
TECHNOLOGIES, LLC

Users are not likely to change this function, but may find its simple implementation useful for understanding
how CONVERT commands are sent via SPI.

 static inline void send_aux_commands()

This function sends all auxiliary commands present in aux_command_list one-by-one via individual SPI
transfers. As above, these SPI transfers are not optimized for speed, and as such this function is not actually
used in the example.

Users are not likely to change this function, but may find its simple implementation useful for understanding
how auxiliary commands are sent via SPI.

userfunctions.c

This file contains the implementations of various functions that are likely to be changed by the user to affect the behavior of the
example program. Each of these functions is discussed below.
 int loop_escape()

This function determines under what conditions the main acquisition loop is exited, and is called both within
the main loop and within the interrupt routine to make sure that this condition’s fulfilment is detected
immediately. When this function returns 1, the main loop exits. If the user wishes to permanently stay in the
main loop (for example, extended real time acquisition and transfer), this function can be written to always
return 0. By default, this function returns 1 once sample_counter exceeds SAMPLES_IN_MEMORY,
indicating that this number of samples has been acquired (one second at 20 kHz, or 20000 samples).

Users may want to change this function to check some other condition, or hard-code it to return 0 if the user
never wants the main acquisition loop to be broken.

 void write_data_to_memory()

This function writes the SELECTED_CHANNEL’s most recent CONVERT command result from the
command_sequence_MISO array into the sample_memory array, incrementing the sample_counter variable.
The +2 offset used to index this MISO array is the result of the 2-command pipeline delay explained in the
RHD chip datasheet: each MOSI command will see its MISO result 2 commands later, and so this function
checks two results further down the pipeline than the original SELECTED_CHANNEL. Once the main data
acquisition loop is escaped, the data in sample_memory is transmitted at once (offline, as opposed to real
time) via USART.

Users may want to change this function for a variety of reasons:

If extended real time data acquisition is desired (if loop_escape() is intended to never return 1), this
function should be left completely empty to avoid sample_counter from continuing to increment to
very high levels and sample_memory eventually getting written out of bounds.

If data from multiple channels is desired to be saved, then multiple arrays like sample_memory can
be used (or a single 2-D array serving the same purpose), so that every sample period a sample
from each selected channel should be saved to memory somewhere. Note that on-chip RAM is
finite, and saving too many samples from too many channels will eventually cause the STM32 chip
to run out of memory.

Finally, if the auxiliary command slots are used for some more advanced purposes that require
reading their results, they can be read here (as demonstrated in the commented-out code in the
function). Due to the 2-command pipeline, and the fact that these are the last three commands in a
command sequence, the result of AUX SLOT 1 will be from the current command sequence,
whereas AUX SLOT 2 and AUX SLOT 3 will be from the previous command sequence.

 void transmit_data_realtime()

This function transmits data from the selected channel, in real time (once per sample period) via USART. By
default, this function is completely commented out, as the example instead demonstrates offline data transfer
(waiting until the full acquisition period is finished, and then transferring all acquired data at once).

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 9

intan
TECHNOLOGIES, LLC

Users may want to change this function if real time acquisition is desired. The function
write_data_to_memory() should be basically replaced by this function. Instead of reading a specific
channel’s sample and saving it to memory, transmit it via USART or whatever the desired peripheral is. Note
that this executes once per sample period. If it takes too long, the next sample period will trigger before
finishing. It is critical to avoid this important error condition, referred to as ITClip, so care must be taken to
ensure this function does not take very long to complete. For example, if transmitting via USART, make sure
data is sent quickly at a high baud rate.

 void transmit_data_offline()

This function transmits acquired data from the selected channel, once the entire acquisition period has
finished and the main loop escaped, via USART. Implementations using both HAL and LL drivers are
included in this function, generally accomplishing the same behavior.

Users may want to change this function if they have made some change to the way that data is saved (for
example, using multiple channels), or remove it completely for real time data. This function is only called
after the main acquisition loop is broken, so for real time acquisitions in which the main loop never breaks,
this function has no purpose, and most likely users will not want to send data both in real time and offline.

 void configure_registers()

This function sets reasonable values for the RHD registers in the RHDConfigParameters struct, and writes
them via SPI. These values are determined programmatically through the functions write_initial_reg_values
and set_default_rhd_settings, in the rhdinterface.c and rhdregisters.c files, before being written via SPI.

Users who want to customize the values of specific registers before acquisition will want to change this
function by altering parameters after write_initial_reg_values is called, and then writing a command
specifically for each changed registers. A commented-out example is included in this function,
demonstrating how registers 5 and 7 can be set to allow for an impedance measurement to occur. (Register
6 should be changed sample-to-sample via an aux command list.)

 void configure_convert_commands()

This function sets up the CONVERT_COMMANDS_PER_SEQUENCE (default 32) CONVERT commands
into the command_sequence_MOSI array, which is used every sample period to send all 32 commands in a
single sequence. This implementation should call create_convert_sequence to populate each of these 32
commands as a 16-bit SPI word that the RHD chip will recognize. Passing NULL as the second parameter
will automatically order these CONVERT commands from 0-31, otherwise an array of uint8_t numbers
can be passed to specify a specific order for these commands to occur.

If CONVERT_COMMANDS_PER_SEQUENCE has been reduced for performance reasons, this array will
specify which channels are sampled at all.

Users who want to alter the order of CONVERT commands or specifically leave out certain channels from
conversions will want to change this function by altering the 2nd argument to create_convert_sequence. A
commented-out example is included in this function, demonstrating how to create and pass a
channel_numbers array so that the sequence populating command_sequence_MOSI is ordered from 31-0
instead of 0-31.

 void configure_aux_commands()

This function sets up the AUX_COMMANDS_PER_SEQUENCE (default 3) auxiliary command lists that are
loaded into the end of the command_sequence_MOSI array, which is used every sample period to send
three auxiliary commands at the end of a single sequence. This implementation should call some variation of
a create_command_list function for each of the (default 3) auxiliary command slots.

Users who want to alter the number of auxiliary commands, or the contents of each command list, will want
to change this function by changing which create_command_list functions are called for each command slot.
By default, slot 1 is an RHD register configuration command list, and slots 2 and 3 are dummy reads of ROM
registers 40 and 41 respectively. Since impedance check command lists have variable lengths (all other
command lists are created to be AUX_COMMAND_LIST_LENGTH commands long, by default 128), the

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 10

intan
TECHNOLOGIES, LLC

process for creating an impedance check command list also requires setting the variable
zcheck_DAC_command_slot_position, and is demonstrated in the commented-out section of this function.

Performance Considerations
This STM32 example code is designed to run comfortably with either HAL or LL drivers, achieving a sample rate of 20 kS/s for
32 channels + 3 auxiliary commands per sample period, with most of the time during acquisition spent processing in the main
loop: most CPU time is free for other processing tasks. However, some applications might need further performance
improvements, for example if 30 kS/s is desired, or if multiple RHD chips are controlled with a single MCU. In these cases, there
are some steps that can be taken to optimize performance for specific applications.

HAL vs LL
HAL (Hardware Abstraction Layer) tends to have more simple function calls and is more uniform across all STM32 chip series,
sacrificing efficiency for simplicity. LL (Low Layer) allows for more efficient completion of given tasks, but requires a deeper
understanding of the individual STM32 registers. We recommend users start with HAL to gain a general understanding of how
the example program works, and then if more advanced understanding is required switch to LL to see how the general behavior
achieved by HAL can be implemented closer to the register level. LL functions tend to also be executed much faster than HAL
functions, so if the user reaches a performance bottleneck often simply switching from HAL to LL will speed up execution
dramatically.

Increasing sample rate
While changing the #define SAMPLE_RATE value and the counter period option for TIM3 in the .ioc will change the
sample rate, rates beyond 20 kS/s are very likely to cause each sample period interrupt to clip into the next (ITClip error), halting
program execution and illuminating the red LED. Each action of the interrupt routine will contribute to this, but the most likely
culprit is the SPI sequence taking too long to complete. The SPI sequence’s speed is physically limited by the minimum time
requirements outlined in the RHD datasheet, and the example program is already quite close to these minimum requirements.
The details of streamlining the SPI transfer are discussed below.

However, the simplest way to get a 35-command sequence to finish executing before the next sample rate is to reduce the
number of commands below 35. Since the total length of the command sequence is CONVERT_COMMANDS_PER_
SEQUENCE + AUX_COMMANDS_PER_SEQUENCE, reducing either of these will reduce the amount of time required for the
sequence to complete. If fewer than 32 channels are required, CONVERT_COMMANDS_PER_SEQUENCE can be reduced to
only include the channels that are sampled. (In the default example program, only one of the 32 sampled channels actually has
its data saved.) Similarly, of the three auxiliary command slots that are included in the example program, two are dummy
command lists that only read ROM registers and act as placeholders for any other auxiliary command lists, so many users will
find AUX_COMMANDS_PER_SEQUENCE can be reduced. The first command slot continually reprograms the RHD registers,
which allows for quick recovery from any unexpected data corruption during acquisition, and is a good idea for longer acquisition
sessions but is not strictly necessary if the speed-up from removing a single SPI command word is critical.

Streamlining SPI Communication
In addition to reducing the number of SPI words per sample period, some steps can be taken to make each SPI word faster.
Currently, the SPI achieves a 20 Mbit/s baud rate (the speed at which SCLK switches throughout a 16-bit word) by dividing the
160 MHz clock by a 8x prescaler. The maximum SCLK baud rate the RHD chip accepts is 25 MHz, as seen on the RHD chip
datasheet. So, there can be a significant SPI speed increase by setting the baud rate to 25 Mbit/s – however, this would require
a clock speed of 100 MHz (4x prescaler) or 200 MHz (8x prescaler). The STM32U5 chip is capable of a maximum clock speed
of 160 MHz, so the SPI communication can actually be sped up by reducing the clock speed to 100 MHz and using a 4x instead
of 8x prescaler. Obviously, throttling the clock speed will reduce efficiency of all other processing tasks, but the example
program does not require very intensive processing so users may find this significantly boosts SPI performance while not
incurring too much slow down elsewhere.

RHD STM32 Firmware Framework

 www.intantech.com ● support@intantech.com 11

intan
TECHNOLOGIES, LLC

A significant source of slow-down is that the SPI peripheral seems to require at least ~40 ns between CS driving low and the first
SCLK pulse. While we have not found a way to speed this up, there may be some capability we are unaware of that allows for
this latency to be reduced closer to the minimum 20 ns listed on the RHD datasheet. Perhaps other STM32 chip series with
more efficient SPI implementations or higher clock speeds are capable of initiating the SPI transfer sooner after CS drives low.

Another important note when discussing changing SPI timing is ensuring the minimum time requirements from the RHD
datasheet are met. If SPI speed is changed, the user must make sure these parameters (namely maximum SCLK frequency of
25 MHz and CS stays high for 154 ns between words) stay valid. The example program already uses MIDI (Master Inter-Data
Idleness), and other SPI control fields like MSSI (Master SS Idleness) in the SPI_CFG2 register can be used to ensure the timing
requirements are not violated.

Speeding up USART
The example code transmits data offline, waiting until a full second’s worth of data is acquired before transmitting any data via
USART, but this can be altered to transmit data in real time instead. See transmit_data_realtime() for a discussion on how to do
this. For offline data transfer speed is unimportant, but if data needs to be transferred alongside data acquisition, the USART
transmission must be as fast as possible to avoid impacting data sampling. While the details of USART communication are
beyond the scope of this document, the higher the baud rate the more quickly data can be sent. As long as the targeted USART
reader is capable of receiving data at a high baud rate, the user should consider increasing the baud rate. The example code
uses 5 Mbit/s which is more than sufficient for streaming a single channel’s data in real time, and is likely capable of increasing
further to at least 10 Mbit/s.

Future Plans
This firmware framework has been developed to use a single SPI bus with an STM32U5 MCU to communicate with a single
RHD2216 or RHD2132. However, we plan to expand this firmware framework to ultimately include a variety of other features,
including the following. If there are other features suitable for your application that you’d like to see in future STM32 framework
releases, please provide us your feedback at support@intantech.com.

1. Multiple SPI buses on a single MCU to control multiple Intan chips at once. Assuming efficient SPI communication can
be achieved using features like DMA, the increased processing load for multiple SPI buses should remain minimal, so
that adding more SPI instances without slowing down sample rate is probably easy. This assumption will not hold for
MCUs with SPI implementations similar to the F4, which require direct processor intervention between each SPI word
to pulse NSS high. However, more recent STM32 chips with more advanced SPI implementations that do not require
this direct processor intervention should all be capable of very efficient SPI communication, so we expect them to be
able to handle multiple SPI buses simultaneously.

2. Various STM32 series other than U5 (for example H7, WL, and/or WBA series), depending on MCU capabilities and
popular demand. While the big-picture control of SPI and DMA peripherals to communicate with Intan chips will remain
the same across various series, each series may have significant changes to the implementations of their peripherals.
We expect that the HAL implementation for different series will generally be quite similar, but the LL implementations
that are closer to the register level may vary significantly.

3. SPI control of RHS2116 chips. The RHS SPI communication protocol differs significantly from the standard RHD
iteration: each SPI word is 32 bits instead of 16 bits. Another important element is the requirement to supply VSTIM+
and VSTIM-, which are usually set to +7 V and -7 V respectively, and these voltages are not typically accessible from
an MCU directly.

4. SPI control of RHD2164 chips. The RHD2164 SPI communication protocol differs significantly from other Intan chips
in that it uses non-standard double-data-rate (DDR) SPI data transfer, in which MISO is sampled at both the rising and
falling edges of SCLK. This should be achievable by configuring the STM32 SPI peripheral to double baud rate with
32-bit words (instead of 16-bit words) and adding a small amount of additional external hardware to divide the SCLK
frequency by two.

RHD2000 Series Biopotential Recording Chips

 www.intantech.com ● info@intantech.com 12

intan
TECHNOLOGIES, LLC

Contact Information
This datasheet is meant to acquaint engineers and
scientists with the Intan STM32 interface code developed
at Intan Technologies. We value feedback from potential
end users. We can discuss your specific needs and
suggest a solution for your applications.

For more information, contact Intan Technologies at:

www.intantech.com
support@intantech.com

© 2023 Intan Technologies, LLC

Information furnished by Intan Technologies is believed to be accurate and reliable. However, no responsibility is assumed by Intan
Technologies for its use, nor for any infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. Intan Technologies assumes no liability for applications assistance or customer
product design. Customers are responsible for their products and applications using Intan Technologies components. To minimize
the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Intan Technologies’ products are not authorized for use as critical components in life support devices or systems. A critical
component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the
failure of the life support device or system, or to affect its safety or effectiveness.

intan
TECHNOLOGIES, LLC

	Features
	Applications
	Description
	Why Is This Code Specific to the STM32U5?
	SPI Communication Requirements

	Overview of Program Flow
	I/O Pins
	Connecting an Intan Chip
	Description of User-Changeable Sections of Example Code
	Performance Considerations
	HAL vs LL
	Increasing sample rate
	Streamlining SPI Communication
	Speeding up USART

	Future Plans
	Contact Information

