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Features 
♦  Open-source STM32 firmware written in C to stream 

real-time data from Intan RHD2132 or RHD2216 
electrophysiology amplifier chips. 

♦  Optimized SPI communication between STM32 MCU 
and Intan RHD chip. 

♦  Interrupt-based code using DMA (direct memory 
access) allows for sampling rates up to 20 kSamples/s 
per channel for 32 channels. 

♦  Both HAL and LL libraries included. 
♦  STM32U5 family supported. 
 

Applications 
♦  Rapid prototyping of Intan Technologies RHD amplifier-

based products 
♦  Starting point for the development of custom interfaces 

to RHD2132 or RHD2216 chips 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Description 
To facilitate the development of electrophysiology 
recording systems using the RHD series of microchips, 
Intan Technologies provides the following open-source 
STM32 firmware framework for developers.  The 
framework consists of C code written for the commercially-
available STM32U5 microcontroller family from 
STMicroelectronics.  The example code streams multi-
channel data from an Intan RHD2132 chip at sample rates 
up to 20 kSamples/s per channel using timers, interrupts, 
and DMA to maintain high throughput while using only a 
small fraction of the MCU capacity. 

 

All Intan example code described in this document was 
developed on the inexpensive STMicroelectronics 
NUCLEO-U5A5ZJ-Q development board, which is 
available from many electronics distributors including 
DigiKey, Mouser, and Newark.  Intan Technologies 
does not sell any MCU development boards. 
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Why Is This Code Specific to the STM32U5? 
There are several families of STM32 microcontrollers with a very wide range of specifications suitable for different applications.  
The example code we provide here for the STM32U5 series is not an indication that only the STM32U5 chips will be the best fit 
for all projects using Intan chips.  However, there are some specific advantages that the U5 family has over other STM32 series 
that make it a reasonable starting point for working with Intan chips. 

The U5 series was launched in 2021 and is currently the most cutting-edge evolution of the well-established L series. It targets 
ultra-low power applications while still providing a maximum CPU clock rate of 160 MHz and robust peripheral support.  High-
speed processing and SPI data transmission / reception are the most important features for achieving high sample rate / high 
channel count communication with Intan chips, and while we have not quite been able to reach the maximum data rate the Intan 
RHD2132 chip is physically capable of supporting (30 kS/s for 32 amplifier channels + 3 auxiliary commands), we have gotten 
quite close (20 kS/s) with relative ease, using both the HAL (Hardware Abstraction Layer) and LL (Low Layer) drivers.  The U5 
series is should be sufficient for basic data acquisition from a single RHD2132 or RHD2216 chip and transmission of that data 
over a USART interface.  Even those applications requiring a high sample rate will likely be able to achieve this by optimizing the 
interface to omit unnecessary features. 

The most important features of the STM32U5 used in the Intan RHD firmware framework are SPI (Serial Peripheral Interface), 
timer-generated interrupts to achieve a reliable sample rate, and DMA (Direct Memory Access) to allow multi-word SPI 
transactions to occur without requiring direct processor intervention.  Most applications will also require some way to transmit 
acquired data somewhere or save it to memory, so peripherals for interacting with USART, Ethernet, wireless systems, or SD 
cards, etc. will probably be useful. 

 
SPI Communication Requirements 

A critical signal in the Intan SPI communication protocol is CS (active-low chip select, called NSS in the STM32) rising high, 
remaining high for at least 154 ns, and then falling low between each 16-bit word.  Unfortunately, the popular STM32F4 series 
SPI bus does not appear to have an easy way to achieve this behavior.  NSS is indeed driven low during each 16-bit word, but 
NSS is not toggled high between words, so the RHD chip does not receive the clear NSS/CS high signal indicating the end of 
a 16-bit word. 

This NSS/CS pulse between every SPI word is required for the RHD chip to operate correctly, so for the STM32F4 chips we are 
forced to decouple NSS from the SPI peripheral and instead use a GPIO pin for CS.  Unfortunately, this requires direct processor 
intervention between every 16-bit word to write CS high, wait, and then write CS low again.  This does allow the RHD chip to 
communicate properly, but it wastes CPU clock cycles, and prohibits the use of DMA for bulk data transfers.  While this approach 
may be feasible for relatively low sample rates (5 kS/s or lower), it is inefficient and limits the communication between the MCU 
and the Intan chip.  This manual control of NSS/CS is necessary for the F4 family and other STM32 families with similar SPI 
buses.  (In theory it is possible to use a precisely-set timer tied to CS that is somehow synchronized with the SPI bus to 
automate CS toggling, but this complicates the SPI communication beyond the scope of entry-level demonstration code.) 

The SPI bus implementation details can differ quite significantly between microcontroller family and manufacturer, so we strongly 
encourage users research their proposed MCU’s SPI implementation to ensure this or similar shortcomings do not hinder or 
complicate data transfer with the RHD chip.  We have verified that the STM32U5 and STM32H7 series have SPI buses that can 
easily be used with NSS automatically pulsing high between 16-bit words, and these families also work nicely with DMA for large 
data transfers. 
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Overview of Program Flow 
This Intan STM32 example code was developed using STM32CubeIDE, and uses HAL or LL drivers (this can easily be changed 
by the user) to configure and control various peripherals. 

The code first configures and initializes the MCU peripherals with various auto-generated functions, which the STM32CubeIDE 
environment creates based on various settings in the .ioc file.  Parameters for configuring the RHD2132 chip are then used to 
determine values for each of the RHD registers, and these are written to the chip using WRITE commands over the SPI bus.  A 
list of 32 CONVERT commands (one for each channel of an RHD2132 chip) and a list of three auxiliary commands (one of which 
continually re-writes the above-determined register values to the RHD chip) are created and stored in memory as 
command_sequence_MOSI for later use.  The green LED is illuminated to indicate when data acquisition starts, and a timer 
interrupt is enabled.  By default, this interrupt should trigger every 8000 clock cycles at 160 MHz, which is 20 kHz.  We will refer 
to this timer period as the sample period.  The program this enters a data acquisition loop. 

This data acquisition loop will only break when the loop_escape() function returns 1, which will not occur until the number of 
acquired samples reaches 20000, meaning one second of data has been acquired.  Until that time, this main loop will repeatedly 
write a dedicated pin Main_Monitor_Pin high, which can be used to monitor when this main loop is processing.  (Other functions 
that trigger due to interrupts will keep this pin low for the duration of their execution).  Because timer interrupts had just been 
enabled, this loop will consistently pause every sample period to execute TIM_interrupt_routine(). 

The TIM_interrupt_routine() function executes once per sample period and begins sending a sequence of SPI commands.  By 
default, this function sends 35 commands: 32 CONVERT commands + 3 auxiliary commands, where each command is a 16-bit 
SPI word.  In addition to beginning the SPI transfer, this routine also writes the Main_Monitor_Pin low.  (The main loop will write it 
high once it begins executing again.)  The function also writes a dedicated Interrupt_Monitor_Pin high only for the duration of the 
function, and does some error checking.  The SPI transfer uses DMA to iterate through the full 35-command list and this routine 
only begins the transfer, so by the time the routine finishes the 35-command sequence will have only just begun. 

An important detail of TIM_interrupt_routine() is that it checks to make sure that the previous SPI sequence is complete; if the 
variable command_transfer_state (discussed below) is still TRANSFER_WAIT from the previous sequence, then the critical 
ITClip error has occurred.  This error, as well as methods to avoid it, are discussed in more detail later.  Briefly, this error 
indicates that the sample period is shorter than the time required for each SPI sequence, so every sample period the next 
sequence is being triggered before the previous one finishes.  This can be solved by extending the sample period (i.e., using a 
lower sample rate) or speeding up each SPI sequence (e.g., sample fewer channels, use fewer AUX commands, or speed up the 
SPI transfer itself, if possible). 

Eventually, one complete SPI transfer sequence will end.  The exact way this is detected varies slightly based on whether LL or 
HAL drivers are used, but in both cases an interrupt triggers the function SPI_TxRxCpltCallback().  The write_data_to_memory() 
function is then executed, which is a user-changeable function that by default writes the result of a single CONVERT command 
(i.e., a sample from a single channel) to memory.  Then, transmit_data_realtime() is executed, which is left blank in our example 
code, but is where the user could choose to implement some data transfer (for example using USART) to send out the MISO 
results from the now-finished command sequence before the next sample period overwrites the results.  The variable 
command_transfer_state is changed; it is set to TRANSFER_WAIT once the transfer begins, TRANSFER_COMPLETE once the 
transfer finishes, and TRANSFER_ERROR if some error was detected. 

The main loop will continue to run, pausing for an interrupt every sample period, until loop_escape() returns 1.  If the user 
changes loop_escape() to always return 0 then this will never occur, so the program will simply continue looping with occasional 
interrupts.  This would be suitable behavior for long-term data acquisition that is not directly saved to memory, but transmitted 
elsewhere in real time every sample period.  Our simple example code is set to escape the loop after one second of data 
acquisition and disable further timer interrupts. 

Next, the user-changeable function transmit_data_offline() is called, which by default sends the 20000 accumulated samples 
from a chosen channel out via USART in a single bulk transfer.  (Implementing real-time transfers would require many smaller 
transfers to be made continually.)  Note that the on-chip memory limitations of the STM32 will not allow for long recordings, 
especially at high sample rates and channel counts, unless the data is transmitted elsewhere. 

Finally, the green LED is switched off, indicating both data acquisition and transmission have completed, and the program enters 
a final infinite loop. 
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I/O Pins 
This example code was developed on an STMicroelectronics NUCLEO-U5A5ZJ-Q development board.  The I/O pins were 
chosen to be easily accessible when using board.  Any changes to I/O pin assignments should be made through the 
rhd_acquisition.ioc file. 

SPI Bus (SPI3) 

NSS (CS): PA4 

SCK (SCLK): PC10 

MISO: PC11 

MOSI: PC12 

LEDs 

LED_GREEN: PC7 

LED_RED: PG2 

Monitor Pins 
Interrupt_Monitor: PD9 (This pin is written high each sample period, so its frequency represents amplifier sample rate.) 

Main_Monitor: PC8 (This pin is written high as long as main loop is processing, so its duty cycle approximates free 
CPU clock cycles that could be used for other processing tasks.) 

ErrorCode_Bit_3: PE0 

ErrorCode_Bit_2: PG8 

ErrorCode_Bit_1: PG5 

ErrorCode_Bit_0: PG6 

 

Connecting an Intan Chip 
This example code was designed to work with an Intan RHD2132 32-channel amplifier chip. The RHD2216 chip can also be 
used, but unless the code is modified, half of the CONVERT commands per sample period will not correspond to real channels.  
The RHD2164 chip uses a non-standard double-data-rate SPI bus protocol, so connecting this chip to an STM32 would require 
some external “glue logic” and significant changes to this firmware which we have not yet implemented.  The RHS2116 chip uses 
32-bit instead of 16-bit SPI words, so it also would require significant firmware changes which are planned for later release. 

Intan headstages are set to communicate using LVDS (low voltage differential signaling) signals on the SPI bus, while most 
microcontrollers use standard non-LVDS SPI signals.  To connect an Intan RHD headstage to the STM32, you must either use 
an Intan LVDS adapter board (part #C3490), or tie the LVDS_en pin on the RHD chip to ground to disable LVDS signaling.  On 
most Intan RHD headstages the LVDS_en pin is hard-wired to VDD and it is impractical to cut the trace, but in the C3335 
headstage (which uses a RHD2132 chip with access to 16 of the 32 amplifiers), there is a zero-ohm resistor labeled R4 that can 
be removed to set LVDS_en low. 

Note that if LVDS signaling is disabled, standard CMOS signaling is used instead, which makes reliable transmission of high-
frequency data over long wires challenging due to signal reflections.  For this reason, if LVDS is disabled, it is critical to keep the 
SPI wires between the MCU and the RHD chip as short as possible, and/or reduce the SPI data transmission rate. 

Another helpful accessory for development is an RHD SPI cable adapter (part #C3430), which plugs into the SPI connector on 
an Intan headstage and breaks out each signal to a circuit board for easy soldering. Each of the twelve signals is assigned its 
own hole for soldering, from B1 - B6 (bottom row) and T1 - T6 (top row).  (The SPI cable adapter is not necessary if the LVDS 
adapter board is used, because the LVDS adapter board includes an SPI cable connector.) 
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Assuming LVDS signaling is disabled and SPI signals are kept short, the following connections can be used along with the 
example program to interface an STM32U5 with an RHD2132 headstage through an SPI cable adapter board.  Note that with 
LVDS disabled, all the (–) polarity signals are unused, and the (+) polarity signals carry the standard CMOS signal. 

RHD SPI adapter board 
pin number 

 
Signal 

STM32  
pin number 

B1 CS+ PA4 
B2 SCLK+ PC10 
B3 MOSI+ PC12 
B4 MISO1+ PC11 
B5 MISO2+ (unused) - 
B6 VDD 3V3 
T1 CS– (unused) - 
T2 SCLK– (unused) - 
T3 MOSI– (unused) - 
T4 MISO1– (unused) - 
T5 MISO2– (unused) - 
T6 GND GND 
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Description of User-Changeable Sections of Example Code 
The example code was designed with user modifications in mind.  While users are free to modify any and all files, there are three 
specific files that are intended to be modified to most effectively alter the program’s functionality: userconfig.h, 
userfunctions.h, and userfunctions.c.  Each of these files and the changes that may be made to them are discussed in detail 
below.  Note that the .ioc file, which governs pin and peripheral configuration, is not included here and should instead be 
changed directly through STM32CubeIDE’s UI if the user wants to use different I/O pins, different peripherals, or different 
parameters for those peripherals (e.g., to change SPI baud rate or timer-generated sample rate). 

userconfig.h 
The user changes in this file are parameters set with #define macros. These parameters are used throughout various files of 
the project, but most aspects of the program that users will want to alter can simply be set here.  For example, the number of 
channels converted per sequence, how many samples to store in memory, and which channel should have its samples stored.  
Those that require more involved changes (for example, sample rate) get further explanation in their sections. 
 #define USE_HAL 

If this line is left uncommented, the code is compiled for compatibility with HAL (Hardware Abstraction Layer) 
drivers for all peripherals.  It is important that if this is left uncommented, the user navigates to the 
STM32CubeIDE IOC viewer -> Project Manager -> Advanced Settings, and confirms that all the peripherals 
that are directly used in user code (GPIO, GPDMA, USART, TIM, SPI) are set to HAL.  In contrast, if this line 
is commented out, the code is compiled for compatibility with LL (Low Layer) drivers, and these peripherals 
should all be set to LL instead. 

In general, HAL drivers are more user-friendly, simple to work with, and largely compatible even across 
different STM32 series.  LL drivers require more device-specific implementation of basic functions, and are 
closer to direct manipulation of registers, so the code using LL tends to be more complex but specialized to 
the chip, typically boosting performance. 

 #define ERROR_DETECTED_PORT  LED_RED_GPIO_Port 

 #define ERROR_DETECTED_PIN  LED_RED_Pin 

These two lines specify the port and pin address of the “Error Detection” pin.  By default, this is set to the pin 
that routes to a red LED on the Nucleo board.  If another pin is desired to be used instead, that pin’s Port and 
Pin addresses should be changed here. 

 #define CONVERT_COMMANDS_PER_SEQUENCE 32 

This line specifies that for every sample period, 32 CONVERT commands will be sent within a single 
sequence.  The order of these CONVERT commands can be customized in configure_convert_commands() 
in userfunctions.c, but if left unchanged, this will be channels 0-31 in ascending order. 

 #define AUX_COMMANDS_PER_SEQUENCE  3 

This line specifies that for every sample period, after the CONVERT commands, three auxiliary commands 
will be sent within a single sequence.  The contents of these auxiliary commands can be customized in 
configure_aux_commands() in userfunctions.c, but if left unchanged, this will have command 1 cycle through 
all RHD registers, re-writing each according to software-configured values, and commands 2 and 3 simply 
repeat dummy READ commands on ROM registers. 

The total number of commands sent in a sequence of a single sample period is 
CONVERT_COMMANDS_PER_SEQUENCE + AUX_COMMANDS_PER_SEQUENCE.  By default, this is 
32 + 3 = 35, so at every period of 1 / SAMPLE_RATE, there will be a sequence of 35 individual 16-bit SPI 
command words. 

 #define AUX_COMMAND_LIST_LENGTH 128 

This line specifies how many auxiliary commands are contained in a single auxiliary command list.  Each of 
the AUX_COMMANDS_PER_SEQUENCE (by default three) has its own slot, and every sequence iteration 
(which happens once per sample period), all slots advance by one through their lists. Once the end of the list 
length (dictated by this parameter) is reached, all lists are reset to zero, and the next sequence all slots will 
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begin at the beginning of their list.  In the default example, slot 0 reprograms most of the RHD RAM registers.  
Because all lists are 128 commands long, when a specific write occurs it can be expected that exactly 128 
samples later, that write will be repeated during the next cycle of the aux command list. 

Note that all auxiliary commands will have this same length, with the exception of Zcheck_DAC command 
lists, which have variable lengths because different DAC output signal frequencies will require different 
numbers of commands.  Progress through these command lists is tracked separately, and will loop back to 
the start at some variable rate depending on frequency.  All other command lists will loop back to their start 
every AUX_COMMAND_LIST_LENGTH number of samples. 

 #define SAMPLE_RATE  20000 

This line specifies the sample rate in Hz of all amplifier channels on the chip.  This parameter is used when 
determining suitable RHD register values for initial configuration, as some register fields like ADC buffer bias 
and MUX bias have optimum values that vary with sample rate.  Note: Changing this value here alone does 
not change the actual sample rate of the example program.  The sample period is governed by the TIM3 
peripheral, specifically the clock input it receives and the counter period set in the .ioc file.  The system clock 
speed of 160 MHz is divided by the counter period of 8000, resulting in the timer issuing an interrupt at the 
desired 20 kHz.  If a different sample rate is desired, it must be changed through the .ioc file by 
altering the TIM3 counter period, not just setting this #define here. 

 #define SAMPLES_IN_MEMORY 20000 

This line specifies how many samples are stored in memory before the main data acquisition loop is 
escaped.  By default, once 20000 samples from a single channel have been acquired, the main loop exits, 
and acquisition stops.  Those 20000 samples will then be transmitted off-chip via USART before the program 
terminates.  With the default SAMPLE_RATE of 20000, this corresponds to one second of data acquisition.  
On-chip RAM is limited, so setting this number excessively high will cause the chip to run out of memory 
during program execution. 

 #define SELECTED_CHANNEL 8 

This line specifies which of the 32 RHD amplifier channels is selected to have each sample stored in memory 
and ultimately transmitted via USART.  The choice of amplifier 8 is arbitrary; any of the channels 0-31 can be 
used.  While all 32 channels are sampled, with each receiving its own CONVERT command once per sample 
period, only this single specified channel has its samples written to memory.  If multiple channels are instead 
desired, the user should alter the write_data_to_memory() function within userfunctions.c. 

userfunctions.h 

This header file contains the declarations of all functions in userfunctions.c, but also a few static inline functions that are short 
and simple enough to go directly in this .h file. Each of these functions is discussed below. 
 static inline void enable_interrupt_timer(int enable) 

This function is called directly before the beginning of the main acquisition loop, with enable = 1, and directly 
after the end of the loop, with enable = 0.  The function either starts or stops the timer and its ability to issue 
an interrupt when the timer reaches its target counter value.  The exact implementation differs based on HAL 
and LL drivers, but generally the same behavior is achieved. 

Users are not likely to change this function unless drastically changing how timers are used to generate 
interrupts. 

 static inline void send_convert_commands() 

This function sends all CONVERT commands present in command_sequence_MOSI one-by-one via 
individual SPI transfers.  Note that these SPI transfers are not optimized for speed (using DMA or interrupts), 
but just poll until they’re complete.  These are not efficient for high-performance transfers (see the our use of 
DMA to achieve these transfers more efficiently) but provide the most straightforward, basic way of sending 
polling SPI transfers.  This function is not actually used in this example, as instead CONVERT commands 
are transferred via DMA, but it can be used with the knowledge that performance and efficiency will be 
reduced. 
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Users are not likely to change this function, but may find its simple implementation useful for understanding 
how CONVERT commands are sent via SPI. 

 static inline void send_aux_commands() 

This function sends all auxiliary commands present in aux_command_list one-by-one via individual SPI 
transfers.  As above, these SPI transfers are not optimized for speed, and as such this function is not actually 
used in the example. 

Users are not likely to change this function, but may find its simple implementation useful for understanding 
how auxiliary commands are sent via SPI. 

userfunctions.c 

This file contains the implementations of various functions that are likely to be changed by the user to affect the behavior of the 
example program. Each of these functions is discussed below. 
 int loop_escape() 

This function determines under what conditions the main acquisition loop is exited, and is called both within 
the main loop and within the interrupt routine to make sure that this condition’s fulfilment is detected 
immediately.  When this function returns 1, the main loop exits.  If the user wishes to permanently stay in the 
main loop (for example, extended real time acquisition and transfer), this function can be written to always 
return 0.  By default, this function returns 1 once sample_counter exceeds SAMPLES_IN_MEMORY, 
indicating that this number of samples has been acquired (one second at 20 kHz, or 20000 samples). 

Users may want to change this function to check some other condition, or hard-code it to return 0 if the user 
never wants the main acquisition loop to be broken. 

 void write_data_to_memory() 

This function writes the SELECTED_CHANNEL’s most recent CONVERT command result from the 
command_sequence_MISO array into the sample_memory array, incrementing the sample_counter variable.  
The +2 offset used to index this MISO array is the result of the 2-command pipeline delay explained in the 
RHD chip datasheet: each MOSI command will see its MISO result 2 commands later, and so this function 
checks two results further down the pipeline than the original SELECTED_CHANNEL.  Once the main data 
acquisition loop is escaped, the data in sample_memory is transmitted at once (offline, as opposed to real 
time) via USART. 

Users may want to change this function for a variety of reasons: 

If extended real time data acquisition is desired (if loop_escape() is intended to never return 1), this 
function should be left completely empty to avoid sample_counter from continuing to increment to 
very high levels and sample_memory eventually getting written out of bounds. 

If data from multiple channels is desired to be saved, then multiple arrays like sample_memory can 
be used (or a single 2-D array serving the same purpose), so that every sample period a sample 
from each selected channel should be saved to memory somewhere.  Note that on-chip RAM is 
finite, and saving too many samples from too many channels will eventually cause the STM32 chip 
to run out of memory. 

Finally, if the auxiliary command slots are used for some more advanced purposes that require 
reading their results, they can be read here (as demonstrated in the commented-out code in the 
function).  Due to the 2-command pipeline, and the fact that these are the last three commands in a 
command sequence, the result of AUX SLOT 1 will be from the current command sequence, 
whereas AUX SLOT 2 and AUX SLOT 3 will be from the previous command sequence. 

 void transmit_data_realtime() 

This function transmits data from the selected channel, in real time (once per sample period) via USART. By 
default, this function is completely commented out, as the example instead demonstrates offline data transfer 
(waiting until the full acquisition period is finished, and then transferring all acquired data at once). 
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Users may want to change this function if real time acquisition is desired. The function 
write_data_to_memory() should be basically replaced by this function.  Instead of reading a specific 
channel’s sample and saving it to memory, transmit it via USART or whatever the desired peripheral is.  Note 
that this executes once per sample period.  If it takes too long, the next sample period will trigger before 
finishing.  It is critical to avoid this important error condition, referred to as ITClip, so care must be taken to 
ensure this function does not take very long to complete.  For example, if transmitting via USART, make sure 
data is sent quickly at a high baud rate. 

 void transmit_data_offline() 

This function transmits acquired data from the selected channel, once the entire acquisition period has 
finished and the main loop escaped, via USART.  Implementations using both HAL and LL drivers are 
included in this function, generally accomplishing the same behavior. 

Users may want to change this function if they have made some change to the way that data is saved (for 
example, using multiple channels), or remove it completely for real time data.  This function is only called 
after the main acquisition loop is broken, so for real time acquisitions in which the main loop never breaks, 
this function has no purpose, and most likely users will not want to send data both in real time and offline. 

 void configure_registers() 

This function sets reasonable values for the RHD registers in the RHDConfigParameters struct, and writes 
them via SPI.  These values are determined programmatically through the functions write_initial_reg_values 
and set_default_rhd_settings, in the rhdinterface.c and rhdregisters.c files, before being written via SPI. 

Users who want to customize the values of specific registers before acquisition will want to change this 
function by altering parameters after write_initial_reg_values is called, and then writing a command 
specifically for each changed registers.  A commented-out example is included in this function, 
demonstrating how registers 5 and 7 can be set to allow for an impedance measurement to occur.  (Register 
6 should be changed sample-to-sample via an aux command list.) 

 void configure_convert_commands() 

This function sets up the CONVERT_COMMANDS_PER_SEQUENCE (default 32) CONVERT commands 
into the command_sequence_MOSI array, which is used every sample period to send all 32 commands in a 
single sequence.  This implementation should call create_convert_sequence to populate each of these 32 
commands as a 16-bit SPI word that the RHD chip will recognize.  Passing NULL as the second parameter 
will automatically order these CONVERT commands from 0-31, otherwise an array of uint8_t numbers 
can be passed to specify a specific order for these commands to occur. 

If CONVERT_COMMANDS_PER_SEQUENCE has been reduced for performance reasons, this array will 
specify which channels are sampled at all. 

Users who want to alter the order of CONVERT commands or specifically leave out certain channels from 
conversions will want to change this function by altering the 2nd argument to create_convert_sequence.  A 
commented-out example is included in this function, demonstrating how to create and pass a 
channel_numbers array so that the sequence populating command_sequence_MOSI is ordered from 31-0 
instead of 0-31. 

 void configure_aux_commands() 

This function sets up the AUX_COMMANDS_PER_SEQUENCE (default 3) auxiliary command lists that are 
loaded into the end of the command_sequence_MOSI array, which is used every sample period to send 
three auxiliary commands at the end of a single sequence.  This implementation should call some variation of 
a create_command_list function for each of the (default 3) auxiliary command slots. 

Users who want to alter the number of auxiliary commands, or the contents of each command list, will want 
to change this function by changing which create_command_list functions are called for each command slot.  
By default, slot 1 is an RHD register configuration command list, and slots 2 and 3 are dummy reads of ROM 
registers 40 and 41 respectively.  Since impedance check command lists have variable lengths (all other 
command lists are created to be AUX_COMMAND_LIST_LENGTH commands long, by default 128), the 
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process for creating an impedance check command list also requires setting the variable 
zcheck_DAC_command_slot_position, and is demonstrated in the commented-out section of this function. 

 
 
Performance Considerations 
This STM32 example code is designed to run comfortably with either HAL or LL drivers, achieving a sample rate of 20 kS/s for 
32 channels + 3 auxiliary commands per sample period, with most of the time during acquisition spent processing in the main 
loop: most CPU time is free for other processing tasks.  However, some applications might need further performance 
improvements, for example if 30 kS/s is desired, or if multiple RHD chips are controlled with a single MCU.  In these cases, there 
are some steps that can be taken to optimize performance for specific applications. 

 

HAL vs LL 
HAL (Hardware Abstraction Layer) tends to have more simple function calls and is more uniform across all STM32 chip series, 
sacrificing efficiency for simplicity.  LL (Low Layer) allows for more efficient completion of given tasks, but requires a deeper 
understanding of the individual STM32 registers.  We recommend users start with HAL to gain a general understanding of how 
the example program works, and then if more advanced understanding is required switch to LL to see how the general behavior 
achieved by HAL can be implemented closer to the register level.  LL functions tend to also be executed much faster than HAL 
functions, so if the user reaches a performance bottleneck often simply switching from HAL to LL will speed up execution 
dramatically. 

 

Increasing sample rate 
While changing the #define SAMPLE_RATE value and the counter period option for TIM3 in the .ioc will change the 
sample rate, rates beyond 20 kS/s are very likely to cause each sample period interrupt to clip into the next (ITClip error), halting 
program execution and illuminating the red LED.  Each action of the interrupt routine will contribute to this, but the most likely 
culprit is the SPI sequence taking too long to complete.  The SPI sequence’s speed is physically limited by the minimum time 
requirements outlined in the RHD datasheet, and the example program is already quite close to these minimum requirements.  
The details of streamlining the SPI transfer are discussed below. 

However, the simplest way to get a 35-command sequence to finish executing before the next sample rate is to reduce the 
number of commands below 35. Since the total length of the command sequence is CONVERT_COMMANDS_PER_ 
SEQUENCE + AUX_COMMANDS_PER_SEQUENCE, reducing either of these will reduce the amount of time required for the 
sequence to complete.  If fewer than 32 channels are required, CONVERT_COMMANDS_PER_SEQUENCE can be reduced to 
only include the channels that are sampled.  (In the default example program, only one of the 32 sampled channels actually has 
its data saved.)  Similarly, of the three auxiliary command slots that are included in the example program, two are dummy 
command lists that only read ROM registers and act as placeholders for any other auxiliary command lists, so many users will 
find AUX_COMMANDS_PER_SEQUENCE can be reduced.  The first command slot continually reprograms the RHD registers, 
which allows for quick recovery from any unexpected data corruption during acquisition, and is a good idea for longer acquisition 
sessions but is not strictly necessary if the speed-up from removing a single SPI command word is critical. 

 

Streamlining SPI Communication 
In addition to reducing the number of SPI words per sample period, some steps can be taken to make each SPI word faster.  
Currently, the SPI achieves a 20 Mbit/s baud rate (the speed at which SCLK switches throughout a 16-bit word) by dividing the 
160 MHz clock by a 8x prescaler.  The maximum SCLK baud rate the RHD chip accepts is 25 MHz, as seen on the RHD chip 
datasheet. So, there can be a significant SPI speed increase by setting the baud rate to 25 Mbit/s – however, this would require 
a clock speed of 100 MHz (4x prescaler) or 200 MHz (8x prescaler).  The STM32U5 chip is capable of a maximum clock speed 
of 160 MHz, so the SPI communication can actually be sped up by reducing the clock speed to 100 MHz and using a 4x instead 
of 8x prescaler.  Obviously, throttling the clock speed will reduce efficiency of all other processing tasks, but the example 
program does not require very intensive processing so users may find this significantly boosts SPI performance while not 
incurring too much slow down elsewhere. 
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A significant source of slow-down is that the SPI peripheral seems to require at least ~40 ns between CS driving low and the first 
SCLK pulse.  While we have not found a way to speed this up, there may be some capability we are unaware of that allows for 
this latency to be reduced closer to the minimum 20 ns listed on the RHD datasheet.  Perhaps other STM32 chip series with 
more efficient SPI implementations or higher clock speeds are capable of initiating the SPI transfer sooner after CS drives low. 

Another important note when discussing changing SPI timing is ensuring the minimum time requirements from the RHD 
datasheet are met.  If SPI speed is changed, the user must make sure these parameters (namely maximum SCLK frequency of 
25 MHz and CS stays high for 154 ns between words) stay valid.  The example program already uses MIDI (Master Inter-Data 
Idleness), and other SPI control fields like MSSI (Master SS Idleness) in the SPI_CFG2 register can be used to ensure the timing 
requirements are not violated. 

 

Speeding up USART 
The example code transmits data offline, waiting until a full second’s worth of data is acquired before transmitting any data via 
USART, but this can be altered to transmit data in real time instead.  See transmit_data_realtime() for a discussion on how to do 
this.  For offline data transfer speed is unimportant, but if data needs to be transferred alongside data acquisition, the USART 
transmission must be as fast as possible to avoid impacting data sampling.  While the details of USART communication are 
beyond the scope of this document, the higher the baud rate the more quickly data can be sent.  As long as the targeted USART 
reader is capable of receiving data at a high baud rate, the user should consider increasing the baud rate.  The example code 
uses 5 Mbit/s which is more than sufficient for streaming a single channel’s data in real time, and is likely capable of increasing 
further to at least 10 Mbit/s. 

 

Future Plans 
This firmware framework has been developed to use a single SPI bus with an STM32U5 MCU to communicate with a single 
RHD2216 or RHD2132.  However, we plan to expand this firmware framework to ultimately include a variety of other features, 
including the following.  If there are other features suitable for your application that you’d like to see in future STM32 framework 
releases, please provide us your feedback at support@intantech.com. 

1. Multiple SPI buses on a single MCU to control multiple Intan chips at once.  Assuming efficient SPI communication can 
be achieved using features like DMA, the increased processing load for multiple SPI buses should remain minimal, so 
that adding more SPI instances without slowing down sample rate is probably easy.  This assumption will not hold for 
MCUs with SPI implementations similar to the F4, which require direct processor intervention between each SPI word 
to pulse NSS high.  However, more recent STM32 chips with more advanced SPI implementations that do not require 
this direct processor intervention should all be capable of very efficient SPI communication, so we expect them to be 
able to handle multiple SPI buses simultaneously. 
 

2. Various STM32 series other than U5 (for example H7, WL, and/or WBA series), depending on MCU capabilities and 
popular demand.  While the big-picture control of SPI and DMA peripherals to communicate with Intan chips will remain 
the same across various series, each series may have significant changes to the implementations of their peripherals.  
We expect that the HAL implementation for different series will generally be quite similar, but the LL implementations 
that are closer to the register level may vary significantly. 
 

3. SPI control of RHS2116 chips.  The RHS SPI communication protocol differs significantly from the standard RHD 
iteration: each SPI word is 32 bits instead of 16 bits.  Another important element is the requirement to supply VSTIM+ 
and VSTIM-, which are usually set to +7 V and -7 V respectively, and these voltages are not typically accessible from 
an MCU directly. 
 

4. SPI control of RHD2164 chips.  The RHD2164 SPI communication protocol differs significantly from other Intan chips 
in that it uses non-standard double-data-rate (DDR) SPI data transfer, in which MISO is sampled at both the rising and 
falling edges of SCLK.  This should be achievable by configuring the STM32 SPI peripheral to double baud rate with 
32-bit words (instead of 16-bit words) and adding a small amount of additional external hardware to divide the SCLK 
frequency by two. 
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Contact Information 
This datasheet is meant to acquaint engineers and 
scientists with the Intan STM32 interface code developed 
at Intan Technologies.  We value feedback from potential 
end users.  We can discuss your specific needs and 
suggest a solution for your applications. 

For more information, contact Intan Technologies at: 

 
 

 
 
 
www.intantech.com 
support@intantech.com 
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Information furnished by Intan Technologies is believed to be accurate and reliable.  However, no responsibility is assumed by Intan 
Technologies for its use, nor for any infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice.  Intan Technologies assumes no liability for applications assistance or customer 
product design.  Customers are responsible for their products and applications using Intan Technologies components.  To minimize 
the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. 

Intan Technologies’ products are not authorized for use as critical components in life support devices or systems.  A critical 
component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the 
failure of the life support device or system, or to affect its safety or effectiveness. 
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