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Features 
♦  Open-source Verilog hardware description language 

(HDL) code configures a Xilinx field-programmable gate 
array (FPGA) to communicate with multiple RHD digital 
electrophysiology interface chips 

♦  Verilog code is written for the commercially-available 
Opal Kelly XEM7310 module with integrated 
SuperSpeed USB 3.0 interface 

♦  Up to 1024 simultaneous amplifier channels supported 
at sample rates up to 30 kS/s/channel 

♦  Programmable FPGA clock for RHD interface: sample 
rates from 1 kS/s/channel to 30 kS/s/channel supported 

♦  Open-source host computer application programming 
interface (API) in C++ for multi-platform support 

♦  Module can interface with eight 16-bit digital-to-analog 
converters (DACs) and route selected amplifier 
channels to selected DACs for analog signal 
reconstruction or audio monitoring with minimal latency 

♦  Optional control of eight 16-bit analog-to-digital 
converters (ADCs) for auxiliary analog inputs 
synchronized to all RHD amplifier channels 

♦  Auxiliary digital I/O: 16 digital input lines and 16 digital 
output lines supported 

 

Applications 
♦  Windows, Mac, or Linux-based electrophysiology signal 

acquisition systems 
♦  Rapid prototyping of Intan Technologies RHD-based 

products 
♦  Starting point for the development of custom interfaces 

to Intan RHD chips 

 

Description 
To facilitate the development of electrophysiology recording 
systems using the RHD series of microchips, Intan 
Technologies provides the following open-source 
USB/FPGA interface for developers.  Designated Rhythm 
USB-7310, the interface consists of Verilog HDL code 
written for the commercially-available Opal Kelly XEM7310 
USB/FPGA interface module and a C++ API.  Rhythm USB-
7310 configures the Xilinx FPGA on the Opal Kelly module 
to communicate with up to 16 RHD chips over SPI buses 
and to stream data from these chips to a host computer over 
a SuperSpeed USB 3.0 interface. 

The Opal Kelly drivers and Rhythm USB-7310 software 
interfaces are designed for multi-platform development 
under Windows, Mac, or Linux.  All API software is written in 
C++ to facilitate rapid development.  This datasheet 
provides documentation on the Rhythm USB-7310  
hardware and software protocols so that developers may 
quickly link the RHD chips to a host computer of their choice. 

Rhythm USB-7310 supports real-time streaming of up to 
1024 amplifier channels from multiple RHD chips, auxiliary 
data from the chips, data from up to eight other ADCs, and 
signals from 16 digital inputs.  All data is synchronized and 
time-stamped before transmission over a standard USB 3.0 
bus to the host computer. 

The host computer may configure the Rhythm USB-7310-
based module to set the RHD per-channel sampling rate 
between 1 kS/s and 30 kS/s for a wide variety of 
electrophysiology recording applications (e.g., neural 
spikes, EMG, EKG).  Custom RHD command sequences 
may be uploaded to the FPGA for transmission over the SPI 
buses.  Selected amplifier channels may be directly routed 
to eight optional DACs for analog signal reconstruction or 
audio monitoring with minimal latency. 
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Rhythm USB-7310 FPGA I/O Signals 
General Description 
The Rhythm USB-7310 interface code is designed for the Opal Kelly XEM7310-A75 USB/FPGA module which is a small 
commercially-available circuit board containing a Xilinx Artix-7 FPGA (XC7A75T-1C), a 1-GByte SDRAM chip, a 200-MHz clock 
source, I/O connectors, and a USB 3.0 interface chip capable of streaming data to a host computer at rates exceeding 340 MByte/s.  
(A photo of the board is shown on page 1 of this datasheet.  See www.opalkelly.com for detailed information on this module.) 

The Artix-7 FPGA is a digital chip containing hundreds of thousands of configurable logic gates, flip-flops, and memory cells with 
programmable connections between them. The FPGA is configured by means of a bitfile, which is compiled from Verilog HDL 
(Hardware Description Language) code using the free Xilinx Vivado software.  The bitfile must be uploaded to the FPGA through 
the host computer USB interface every time the board is powered up; it is not stored in non-volatile RAM on the FPGA or the Opal 
Kelly module.  Since this “booting” process takes only a fraction of a second, the flexibility it imparts becomes a useful feature: any 
changes made to the bitfile can be incorporated into a software release.  The FPGA never needs to be programmed using a special 
EEPROM programmer or JTAG interface. 

Opal Kelly also offers the XEM7310-A200 USB/FPGA module which is identical to the XEM7310-A75 except for the use of an 
XC7A200T-1C FPGA which contains approximately three times as many logic gates as the XC7A75T-1C.  Developers who wish 
to add significant amounts of processing at the FPGA level may wish to use this module and recompile the Rhythm USB-7310 
Verilog code selecting this larger FPGA as the target. 

The diagram below shows the main elements of the XEM7310 board and the I/O signals defined by Rhythm USB-7310. 
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RHD SPI Interfaces 
Rhythm USB-7310 sets up eight SPI ports (labeled A through H) that can send independent command streams to different sets of 
RHD chips.  Unlike the old USB2 version of Rhythm, LVDS signals are not generated directly by the FPGA, requiring the user to 
add external CMOS-to-LVDS interfacing chips (e.g., the SN65LVDT41 from Texas Instruments) if LVDS signals will be used to 
interface with the RHD chips.  LVDS signaling is recommended for operation over long cables. 

Each SPI port on the FPGA has three output signals that coordinate communication with RHD chips and send commands: CS, 
SCLK, and MOSI (Master Out, Slave In).  The FPGA always acts as the SPI master device, and each RHD chip acts as an SPI 
slave device.  Each SPI port in Rhythm USB-7310 has two MISO (Master In, Slave Out) inputs for receiving data from an RHD 
chip.  This means that each port can be connected to two RHD chips, but both of these chips will receive the same commands.  
So, for example, the auxiliary digital output pin on the two RHD chips cannot be set to different values.  For most applications this 
is not a serious restriction, and it permits the construction of compact 128-channel recording modules using two RHD2164 chips, 
for example.  Each module requires a 12-conductor cable to support five LVDS SPI signals plus power and ground. 

The use of LVDS signals permits robust data transfer over cables several meters in length.  However, long cables will introduce 
significant delays to the SPI signals.  Typical cable propagation velocities are two-thirds the speed of light – about 20 cm/ns – so 
a three-meter cable will have a round-trip signal delay of 30 ns.  (At high sampling rates, the SCLK period may be less than 50 ns.)  
Rhythm USB-7310 allows users to adjust the MISO sampling delay independently on all eight SPI ports to account for cable delays. 

Using dual MISO signals on each of eight ports, the FPGA can stream data from up to 16 RHD chips.  If 16 RHD2164 chips are 
used, a total of 1024 amplifier channels may be acquired in real time.  The USB 3.0 interface on the Opal Kelly XEM7310 module 
is capable of reliably streaming data from 1024 channels to a host computer at per-channel sampling rates up to 30 kS/s, even 
with typical USB protocol overhead and software overhead. 

Rhythm USB-7310 sends commands to all RHD chips in a repeating 35-command sequence: every sampling period, the FPGA 
sends the commands CONVERT(0), CONVERT(1), CONVERT(2), and so on up to CONVERT(31) to sample from all amplifiers 
on the chip.  (If the 16-channel RHD2216 chip is used, the last 16 CONVERT commands produce junk results that can be ignored.)  
These 32 CONVERT commands are followed by three “auxiliary” commands that may be used to perform a variety of other tasks 
on an RHD chip, like synthesizing a waveform for electrode impedance testing, reading from the auxiliary inputs, performing ADC 
calibration, or reading and writing other registers.  Under Rhythm USB-7310, the first 32 CONVERT commands are fixed, but the 
remaining auxiliary commands may be programmed from the host computer. 

A clock generator on the Opal Kelly circuit board provides a 200-MHz clock to the FPGA; this clock is used to run the USB interface 
logic.  Rhythm USB-7310 controls an on-FPGA frequency synthesizer that is used to generate a programmable-frequency clock 
that can be reconfigured by the host computer to produce many different SPI data rates so that the RHD amplifiers can be sampled 
at per-channel rates varying from 1 kS/s to 30 kS/s. 

 
Other I/O Signals 
Rhythm USB-7310 also defines I/O pins that can be connected to several commercially-available 16-bit DACs and ADCs.  The 
Verilog code supports up to eight 16-bit DACs and eight 16-bit ADCs that communicate using a three-wire SPI interface.  Rhythm 
USB-7310 is designed to support the Analog Devices AD5662 DAC and the Analog Devices AD7980 ADC (note: the older Rhythm 
code for USB2 supported the AD7680 ADC, which has a different command protocol); other DACs and ADCs could be supported 
by modifying the Verilog code.  Rhythm USB-7310 permits the user to select particular RHD amplifier channels to be routed directly 
to selected DACs through the FPGA, eliminating any USB or host computer latency.  Alternatively, any of the DACs may be 
controlled by a dedicated data stream from the host computer if more latency can be tolerated. 

The optional ADCs are sampled in synchrony with the RHD amplifiers, and their results are streamed back to the host computer 
over the USB interface. 

Rhythm USB-7310 also supports 16 digital inputs and 16 digital outputs.  The digital outputs produce 3.3V signals.  The digital 
inputs have a logic threshold around 1.5V and can safely accept signals up to 5V.  Two digital inputs are sampled directly; more 
can be implemented using 74HC165 shift register integrated circuits (contact Intan Technologies for more information). 

Eight of the digital outputs may serve as low-latency threshold comparators for the signals routed to the DACs.  Threshold levels 
and polarities may be specified, and the FPGA will trigger the appropriate digital outputs if each threshold is exceeded.  
The Opal Kelly board has an array of eight red LEDs (in addition to a green power LED) that may be controlled by the host 
computer.  Additional FPGA pins are allocated for the control of eight SPI port LEDs and three general-purpose status LEDs. 
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A digital output signal sample_clk is provided on FPGA pin B35_L21P as a convenience.  This signal is a clock running at the per-
channel amplifier sampling rate.  The duty cycle of the signal is 1/35.  For example, if the board is configured to sample each RHD 
amplifier channel at 20 kS/s than the period of this clock will be 50 µs.  It will be high for approximately 1.43 µs, and low the rest 
of the cycle.  (The signal goes high at the falling edge of CS that begins the CONVERT(0) command, and it goes low at the falling 
edge of CS that begins the CONVERT(1) command.) 

 

Power Supply 
The total current consumption of the XEM7310 board running Rhythm USB-7310 exceeds the 500 mA USB port limit.  It is 
recommended to power the Opal Kelly XEM7310 board from a 5V DC power supply capable of sourcing sufficient current and 
having a 2.1mm inner-diameter / 5.5mm outer-diameter connector.  Digi-Key (www.digikey.com) offers a medical-rated power 
supply that mates with the XEM7310 board, supplies up to 2.0 A of current, and includes connectors for AC plugs in a variety of 
countries (part number T1233-P5P-ND). 

The Opal Kelly board provides regulated 1.0V, 1.8V, and 3.3V supplies.  See the Opal Kelly documentation for current limits on 
these supplies. 

If RHD chips will be powered over long cables, it is a good idea use a linear regulator to generate a 3.5V power supply from the 
5V power delivered to the board.  RHD chips may be safely powered at 3.5V, and the excess 0.2 V above the nominal power 
supply voltage of 3.3V will make up for some of the IR losses incurred over long cables with thin power wires. 

 

I/O Pin Locations 
The I/O pin tables on the following four pages are based on information in the Opal Kelly XEM7310 User’s Manual. 

There are four pins labeled board_mode[0..3] which are configured as inputs.  Our RHX data acquisition software requires these 
pins to be set to 13 (board_mode[3] = 1, board_mode[2] = 1, board_mode[1] = 0, board_mode[0] = 1) to recognize an XEM7310 
as an RHD recording controller. 

Users may wish to purchase the BRK7010 breakout board which can be connected to the XEM7310 module, and which brings the 
I/O pins out to convenient 2mm-pitch headers. 

FPGA pin names come in pairs of positive and negative signals that can be used as LVDS pairs (e.g., B35_L19P and B35_L19N 
are I/O pin pairs in FPGA Bank 35).  An inspection of the xem7310.xdc file provided with Rhythm USB-7310 shows that the 
IOSTANDARD LVDS_25 property is used for LVDS signals, while IOSTANDARD LVCMOS_33 is used for standard CMOS signals. 
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MC1 I/O Connections – Odd Pins 
MC1 Pin Connection FPGA Pin Rhythm USB-7310 Interface Pin Name 
1 +VDCIN  +5V 
3 +VDCIN  +5V 
5 +VDCIN  +5V 
7 +1.8VDD   
9 +3.3VDD  VDD 
11 +3.3VDD  VDD 
13 +3.3VDD  VDD 
15 W9 B34_L24P ADC_CS 
17 Y9 B34_L24N DAC_SCLK 
19 R6 B34_L17P DAC_SYNC 
21 T6 B34_L17N DAC_DIN_8 
23 U6 B34_L16P unused 
25 V5 B34_L16N unused 
27 T5 B34_L14P DAC_DIN_7 
29 U5 B34_L14N DAC_DIN_6 
31 AA5 B34_L10P unused 
33 D17 B34_L10N unused 
35 DGND  GND 
37 AB7 B34_L20P DAC_DIN_5 
39 AB6 B34_L20N DAC_DIN_4 
41 R3 B34_L3P unused 
43 R2 B34_L3N unused 
45 Y3 B34_L9P unused 
47 AA3 B34_L9N unused 
49 U2 B34_L2P unused 
51 V2 B34_L2N DAC_DIN_3 
53 W2 B34_L4P DAC_DIN_2 
55 DGND  GND 
57 Y2 B34_L4N DAC_DIN_1 
59 T1 B34_L1P ADC_DOUT_2 
61 U1 B34_L1N ADC_DOUT_1 
63 AA1 B34_L7P DIG_IN_SERIAL_2 
65 AB1 B34_L7N DIG_IN_SERIAL_1 
67 AB16 B13_L2P EXP_ID 
69 AB17 B13_L2N EXP_DETECT 
71 AA15 B13_L4P STATUS_LED_3 
73 AB15 B13_L4N STATUS_LED_2 
75 Y16 B13_L1P STATUS_LED_1 
77 V4 B34_L12P_MRCC unused 
79 W4 B34_L12N_MRCC unused 
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MC1 I/O Connections – Even Pins 
MC1 Pin Connection FPGA Pin Rhythm USB-7310 Interface Pin Name 
2 DGND  GND 
4 +1.0VDD   
6 +1.0VDD   
8 AB11 SYS_CLK_MC1  
10 M9 XADC_VN  
12 L10 XADC_VP  
14 DGND  GND 
16 V9 B34_L21P ADC_SCLK 
18 V8 B34_L21N TTL_OUT[0] 
20 V7 B34_L19P TTL_OUT[1] 
22 W7 B34_L19N TTL_OUT[2] 
24 Y8 B34_L23P TTL_OUT[3] 
26 Y7 B34_L23N TTL_OUT[4] 
28 W6 B34_L15P TTL_OUT[5] 
30 W5 B34_L15N TTL_OUT[6] 
32 R4 B34_L13P board_mode[0] 
34 T4 B34_L13N board_mode[1] 
36 VCCO_MC1   
38 Y4 B34_L11P board_mode[2] 
40 AA4 B34_L11N board_mode[3] 
42 Y6 B34_L18P TTL_OUT[7] 
44 AA6 B34_L18N TTL_OUT[8] 
46 AA8 B34_L22P TTL_OUT[9] 
48 AB8 B34_L22N TTL_OUT[10] 
50 U3 B34_L6P TTL_OUT[11] 
52 V3 B34_L6N TTL_OUT[12] 
54 W1 B34_L5P TTL_OUT[13] 
56 VCCO_MC1   
58 Y1 B34_L5N TTL_OUT[14] 
60 AB3 B34_L8P TTL_OUT[15] 
62 AB2 B34_L8N ADC_DOUT_8 
64 Y13 B13_L5P ADC_DOUT_7 
66 AA14 B13_L5N ADC_DOUT_6 
68 AA13 B13_L3P ADC_DOUT_5 
70 AB13 B13_L3N ADC_DOUT_4 
72 W15 B13_L16P ADC_DOUT_3 
74 W16 B13_L16N TTL_IN[1] 
76 AA16 B13_L1N TTL_IN[0] 
78 DGND  GND 
80 DGND  GND 
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MC2 I/O Connections – Odd Pins 
MC2 Pin Connection FPGA Pin Rhythm USB-7310 Interface Pin Name 
1 DGND  GND 
3 +VCCBAT   
5 FPGA_TCK   
7 FPGA_TMS   
9 FPGA_TDI   
11 SYS_CLK_MC2 AB12  
13 DGND  GND 
15 P5 B35_L21P SAMPLE_CLK 
17 P4 B35_L21N MARK 
19 N4 B35_L19P SERIAL_LOAD 
21 N3 B35_L19N SERIAL_CLK 
23 L5 B35_L18P SPI_LED_H 
25 L4 B35_L18N SPI_LED_G 
27 M6 B35_L23P SPI_LED_F 
29 M5 B35_L23N SPI_LED_E 
31 M1 B35_L15P SPI_LED_D 
33 L1 B35_L15N SPI_LED_C 
35 VCCO_MC2   
37 K2 B35_L9P SPI_LED_B 
39 J2 B35_L9N SPI_LED_A 
41 K1 B35_L7P MISO_H2 
43 J1 B35_L7N MISO_H1 
45 H3 B35_L11P unused 
47 G3 B35_L11N MOSI_H 
49 E2 B35_L4P SCLK_H 
51 D2 B35_L4N CS_H 
53 F3 B35_L6P MISO_G2 
55 VCCO_MC2   
57 E3 B35_L6N MISO_G1 
59 B1 B35_L1P unused 
61 A1 B35_L1N MOSI_G 
63 K4 B35_L13P SCLK_G 
65 J4 B35_L13N CS_G 
67 T16 B13_L17P MISO_F2 
69 U16 B13_L17N MISO_F1 
71 V13 B13_L13P unused 
73 V14 B13_L13N MOSI_F 
75 Y11 B13_L11P SCLK_F 
77 H4 B35_L12P_MRCC CS_F 
79 G4 B35_L12N_MRCC MISO_E2 
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MC2 I/O Connections – Even Pins 
MC2 Pin Connection FPGA Pin Rhythm USB-7310 Interface Pin Name 
2 +3.3VDD  VDD 
4 +3.3VDD  VDD 
6 +3.3VDD  VDD 
8 FPGA_TDO   
10 F4 B35_IO0  
12 L6 B35_IO25  
14 DGND  GND 
16 P6 B35_L24P CS_A 
18 N5 B35_L24N SCLK_A 
20 P2 B35_L22P MOSI_A 
22 N2 B35_L22N unused 
24 R1 B35_L20P MISO_A1 
26 P1 B35_L20N MISO_A2 
28 M3 B35_L16P CS_B 
30 M2 B35_L16N SCLK_B 
32 K6 B35_L17P MOSI_B 
34 J6 MOSI2_B unused 
36 DGND  GND 
38 L3 B35_L14P MISO_B1 
40 K3 B35_L14N MISO_B2 
42 J5 B35_L10P CS_C 
44 H5 B35_L10N SCLK_C 
46 H2 B35_L8P MOSI_C 
48 G2 B35_L8N unused 
50 G1 B35_L5P MISO_C1 
52 F1 B35_L5N MISO_C2 
54 E1 B35_L3P CS_D 
56 DGND  GND 
58 D1 B35_L3N SCLK_D 
60 C2 B35_L2P MOSI_D 
62 B2 B35_L2N unused 
64 U15 B13_L14P MISO_D1 
66 V15 B13_L14N MISO_D2 
68 T14 B13_L15P CS_E 
70 T15 B13_L15N SCLK_E 
72 W14 B13_L6P MOSI_E 
74 Y14 B13_L6N unused 
76 Y12 B13_L11N MISO_E1 
78 DGND  GND 
80 DGND  GND 
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General Description of Interface Operation 
Host Computer Interface 
Most electrophysiology recording applications require that data is sampled at a steady rate for long periods of time.  To interface 
this steady stream of data with a host computer that uses a modern, multitasking operating system requires a hardware FIFO (First 
In, First Out) buffer to store data during brief intervals while the computer is busy performing other tasks.  Luckily, the Opal Kelly 
board includes a 1 GByte SDRAM chip that can be used for just such a purpose (though only 128 MBytes are used, for consistency 
with earlier versions of Rhythm).  The Rhythm USB-7310 code implements an SDRAM-based FIFO as a circular queue of 16-bit 
words.  Three on-FPGA “mini-FIFOs” regulate the flow of data into and out of the main SDRAM FIFO.  The output of the FIFO is 
connected to a “BTPipeOut” endpoint for transfer across the USB port to the host computer (see details below). 

The FIFO is capable of reporting the number of 16-bit words it is currently holding.  There is no mechanism in the FIFO to protect 
against underflow.  That is, if the computer tries to read more data than the FIFO is currently holding, the FIFO will just repeat the 
last word after it runs out of data.  To prevent underflow, it is essential for the host to monitor the amount of data in the FIFO and 
never attempt to read more words than the FIFO contains. 

Neither is there a mechanism in the FIFO to protect against overflow.  If the FIFO fills up, it will "lap" the unread data and begin 
writing over old data in the SDRAM.  So the host computer must monitor the number of words in the FIFO and make sure it doesn't 
get too full.  The Rhythm USB-7310 FIFO can hold 227 = 134,217,728 bytes, or 226 = 67,108,864 16-bit words.  The on-FPGA "mini-
FIFOs" add a few hundred thousand more words to this total, but it is good practice never to allow the FIFO to get more than 75% 
full in case the computer OS hangs for a moment. 

In order to completely "clean out" the FIFO after pausing or stopping the flow of data into it, it is necessary to always write an 
integer multiple of four 16-bit words to the FIFO.  If there are one, two, or three 16-bit words of data remaining in the input mini-
FIFO, they will not be read into the SDRAM (and passed to the output mini-FIFO and thence the USB bus) after the flow of data 
from the source has stopped.  The Rhythm USB-7310 Verilog code is structured to ensure that data frames are always integer 
multiples of four 16-bit words. 

Communication with the SDRAM chip must be done in 256-bit chunks, so if only 15 16-bit words are written to the FIFO, they will 
not pass through the SDRAM until a final 16-bit word is written.  In order to fully flush the FIFO, it necessary to always write an 
integer multiple of 16 16-bit words to the FIFO.  The Rhythm USB-7310 Verilog code includes a 4-bit counter that increments with 
every word written into the FIFO to track how many remainder words are present and writes the necessary number of dummy 
words when pausing or stopping the flow of data to ensure the last words are included in a full 256-bit chunk. 

The Rhythm USB-7310 interface is capable of transmitting up to 32 simultaneous data streams.  In Rhythm USB-7310, a data 
stream is defined as the SPI output of one MISO line from an RHD chip.  The 32 data streams correspond to the 32 MISO inputs 
(and DDR inputs) to the FPGA in Ports A through H.  Unless 16-channel RHD2216 chips are used, each data stream conveys 32 
amplifier channels.  Data streams may be disabled if they are not used; this will reduce the amount of data flowing through the 
FIFO and across the USB interface to the computer. 

 

Data Frame Format 
A data frame of identical format is transmitted to the FIFO once per amplifier sampling period.  The size of the data frame depends 
on the number of data streams that are enabled.  The data frame has the following structure: 

64-bit header: a “magic number” always equal to 0xD7A22AAA38132A53 that can be used to check for data synchrony. 

32-bit timestamp: a 32-bit counter that starts at zero and increments by one every data frame. 

16-bit MISO result 1 from data stream 1 (if data stream 1 is enabled) 
16-bit MISO result 1 from data stream 2 (if data stream 2 is enabled) 
… 
16-bit MISO result 1 from data stream 32 (if data stream 32 is enabled) 

16-bit MISO result 2 from data stream 1 (if data stream 1 is enabled) 
16-bit MISO result 2 from data stream 2 (if data stream 2 is enabled) 
… 
16-bit MISO result 2 from data stream 32 (if data stream 32 is enabled) 
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… 

16-bit MISO result 35 from data stream 1 (if data stream 1 is enabled) 
16-bit MISO result 35 from data stream 2 (if data stream 2 is enabled) 
… 
16-bit MISO result 35 from data stream 32 (if data stream 32 is enabled) 

Between zero and three 16-bit filler word (all zeros) 

16-bit AD7980 ADC 1 result 
16-bit AD7980 ADC 2 result 
16-bit AD7980 ADC 3 result 
16-bit AD7980 ADC 4 result 
16-bit AD7980 ADC 5 result 
16-bit AD7980 ADC 6 result 
16-bit AD7980 ADC 7 result 
16-bit AD7980 ADC 8 result 

16-bit TTL input result 

16-bit TTL output current value 

The all-zero filler words are inserted to ensure that each data frame contains an integer multiple of four 16-bit words, as required 
by the FIFO (see previous section).  Each data frame contains (35·N + 16 + N mod 4) words or 2·(35·N + 16 + N mod 4) bytes, 
where N is the number of data streams that are enabled.  The Opal Kelly USB-7310 interface sends data in bytes.  In Rhythm 
USB-7310, the least-significant byte of each multi-byte word is always sent first. 

If we know the size of the data frame and the sampling rate, we can calculate the capacity of the FIFO.  For example, a 32-channel 
system (N = 1) will have a data frame 104 bytes in length.  Running at the maximum rate of 30 kS/s, the data rate will be 3.12 
MByte/s.  At this rate, the FIFO can hold up to 43.0 seconds of data.  A 1024-channel system (N = 32) will have a data frame 2272 
bytes in length.  Running at the maximum rate of 30 kS/s, the data rate will be 68.16 MByte/s.  At this rate, the FIFO can hold up 
to 1.9 seconds of data.  These calculations demonstrate that the FIFO has sufficient capacity to handle typical brief operating 
system pauses during USB data transfers. 

The Opal Kelly USB-7310 interface can easily handle 68.16 MByte/s data rates, provided a reasonably fast host computer is used.  
A Dell XPS 8930 Windows 10 PC purchased in 2020 with a 3.0 GHz Intel i7-9700 processor is capable of running at this rate with 
an Opal Kelly XEM7310 board and multi-threaded C++ software. 

The bulk of each data frame consists of MISO results received from the SPI interface from each RHD chip.  These MISO results 
are numbered 1 through 35, and correspond to the 35 repeated commands sent over the MOSI lines to each device during each 
sampling period.  The repeating MOSI command structure is as follows: 

CONVERT(0) 
CONVERT(1) 
CONVERT(2) 

… 

CONVERT(31) 
auxiliary command 1 
auxiliary command 2 
auxiliary command 3 

It is important to remember that the RHD uses a pipelined communication protocol; each command sent over the MOSI line 
generates a 16-bit result that is transmitted over the MISO line two commands later (see the “SPI Command Words” section of the 
RHD datasheet for details).  The FPGA introduces another one-command pipeline delay in the received MISO results, so every 
MISO result received through the Rhythm USB-7310 FPGA corresponds to the MOSI command sent three steps earlier.  
Thus “MISO result 1” is the result of the “auxiliary command 1” from the previous sampling period; “MISO result 4” corresponds to 
the “CONVERT(0)” command from the current sampling period; and “MISO result 35” corresponds to the “CONVERT(31)” 
command from the current sampling period.  To see the result of the three auxiliary commands at the end of a sampling period, 
the next data frame must be read. 
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Programming Auxiliary Command Sequences 
Each RHD SPI port (A through H) can send a different set of commands in the three auxiliary command slots described above, 
which we will abbreviate as auxcmd1, auxcmd2, and auxcmd3.  Sequences of auxiliary commands can be uploaded into on-
FPGA RAM banks that each hold up to 1024 commands.  These command sequences will be transmitted over the MOSI line from 
each port.  The FPGA contains multiple RAM banks that may be pre-loaded with different command sequences which can then be 
switched rapidly to select different operations. 

A concrete example will make things clearer:  Let’s assume that we always use the auxcmd1 slot for updating the RHD on-chip 
DAC used to generate waveforms for electrode impedance testing (i.e., Zcheck DAC in Register 6).  We can construct a list of 
commands of the form WRITE(6, x) that generate a sine wave at a particular frequency and amplitude.  We can upload this 
sequence of commands to a RAM bank on the FPGA that is associated with the auxcmd1 slot, as long as the sequence has 1024 
or fewer commands.  Each command slot has 16 RAM banks associated with it that can be rapidly selected as the command 
source.  We could generate command sequences corresponding to sine waves at 16 different frequencies (one of these would 
probably be a “flat-line” DC waveform to be used when impedance testing is disabled) and upload these to the 16 different 
auxcmd1 RAM banks shortly after the FPGA booted up.  This would allow us to rapidly switch between impedance testing 
frequencies without having to upload new command sequences. 

Similarly, we could always use the auxcmd2 slot for sampling the auxiliary inputs to the RHD ADC.  We could put together a list 
of commands to perform these functions and load it into one of the 16 RAM banks associated with the auxcmd2 slot.  Since only 
one of these commands is executed every sampling period, these sensors would be sampled at a slower rate than the RHD 
amplifiers, but this is acceptable for most applications. 

We could use the auxcmd3 slot to initialize all the other registers on the chip (e.g., to set amplifier bandwidth), to perform ADC 
calibration once, and to perform other miscellaneous tasks.  Again, there are 16 on-FPGA RAM banks associated with the 
auxcmd3 slot in case it is necessary to send different commands to SPI ports A through H. 

For each auxiliary command slot (auxcmd1, auxcmd2, and auxcmd3), the user must specify the length of the command 
sequence.  This command sequence length is the same for Ports A through H.  When data acquisition is started, all auxiliary 
command sequences start at the beginning of their selected RAM banks and increment to the next command every sampling 
period.  When the command index reaches the specified command sequence length, the command index resets to a command 
loop index.  In many cases, the command loop index will be set to zero so that the entire command sequence repeats in its entirety 
(e.g., the DAC waveform generator commands).  However, the command loop index may be set to a number greater than zero so 
that the first part of the command sequence is executed only once, and a later sequence is executed in a loop.  This may be used, 
for example, to initialize the registers on the chip and to run ADC calibration only once at the beginning of data acquisition. 

Any changes made in the selection of RAM bank to be used for a particular command slot, or changes in the command sequence 
length or the command loop index only take effect when the current command sequence reaches its end, or when the SPI interface 
is stopped and restarted. 
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Detailed Description of Interface Operation 
Opal Kelly provides platform-specific driver files (e.g., a DLL file for Windows) and a C++ API (application programming interface) 
that defines software endpoints used to communicate with XEM boards.  WireIn and TriggerIn endpoints transfer information 
from the host computer to the FPGA, while WireOut and BTPipeOut endpoints transfer information from the FPGA to the host 
computer.  Opal Kelly makes all drivers and API software available for download with the purchase of an XEM board.  In the 
sections below, we list all the Opal Kelly endpoints used by Rhythm USB-7310, and we provide sample C++ code for 
communicating over these endpoints to a Rhythm USB-7310-powered XEM7310 board. 
 
 

Opening and Initializing the Opal Kelly Board 
The following C++ code shows how an Opal Kelly XEM7310 board is opened and initialized.  Additional code should be added to 
check for errors and other exceptions (e.g., board not connected, multiple boards connected).  The 
ConfigRHDController_7310.bit bitfile contains the compiled Rhythm USB-7310 Verilog code provided by Intan Technologies.  
After this bitfile is uploaded to the XEM7310 board, it behaves as the Rhythm USB-7310 interface described in this document. 
okCFrontPanel* dev; 
 
dev = new okCFrontPanel; 
 
// If only one Opal Kelly board is plugged in to the host computer, we can use this. 
dev->OpenBySerial(); 
 
// Set XEM7310 PLL to default configuration to produce 200 MHz FPGA clock. 
dev->LoadDefaultPLLConfiguration(); 
 
// Upload Rhythm USB-7310 bitfile which is compiled from Rhythm USB-7310 Verilog code. 
dev->ConfigureFPGA(“ConfigRHDController_7310.bit”); 

 

 

USB Software Endpoints: WireIn and TriggerIn Ports 
USB-7310 WireIn ports are virtual 32-bit wires that transfer data asynchronously from the host computer to the FPGA.  Up to 32 
WireIn ports (with addresses from 0x00 to 0x1F) are available for use with each Opal Kelly module.  The following C++ code shows 
how data is sent over WireIn ports. 
okCFrontPanel* dev; 
// Code to open Opal Kelly board not shown here. 
 
// Set WireIn port 0x00 to 0x12345678. 
dev->SetWireInValue(0x00, 0x12345678); 
 
// Optional third term is a bit mask; this command sets bits 0 and 1 of 
// WireIn port 0x01 to one, sets bits 2 and 3 to zero, and leaves bits 4-31 
// unchanged. 
dev->SetWireInValue(0x01, 0x00000003, 0x0000000F); 
 
// WireIn ports are only updated on the FPGA when UpdateWireIns() is called. 
// Here, WireIn ports 0x00 and 0x01 are updated simultaneously. 
dev->UpdateWireIns(); 

 

TriggerIn ports are virtual 32-bit wires that transfer digital one-shot pulses from the host computer to the FPGA.  Up to 32 TriggerIn 
ports (with addresses from 0x40 to 0x5F) are available for use with each module.  The following C++ code shows how pulses are 
sent over TriggerIn ports. 
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okCFrontPanel* dev; 
// Code to open Opal Kelly board not shown here. 
 
// Send one-shot pulse on bit 0 of TriggerIn port 0x40. 
dev->ActivateTriggerIn(0x40, 0); 
 
// Now send one-shot pulse on bit 7 of TriggerIn port 0x40. 
dev->ActivateTriggerIn(0x40, 7); 

 
 

WireIn 0x00: WireInResetRun 
TriggerIn 0x41: TrigInSpiStart 
WireInResetRun[0]: reset 
When the Opal Kelly board is first powered up and Rhythm USB-7310 is uploaded, this reset signal should be brought high 
momentarily to initialize many internal registers and finite state machines.  This reset signal should then remain low for the 
remainder of Rhythm USB-7310 operation.  Pulling this signal high resets the sampling rate to its default value of 30 kS/s/channel 
and clears all command RAM banks. 

WireInResetRun[1]: SPI_run_continuous 

When this bit is set high, data acquisition will run continuously once it is started by pulsing TrigInSpiStart[0].  To halt data 
acquisition immediately, set this bit to zero and set WireInMaxTimeStep (WireIn 0x01) to zero.  If this bit is set low, data acquisition 
will only run for a finite number of samples set by MaxTimeStep. 

WireInResetRun[2]: DSP_settle 

When this bit is set high, the LSB of all CONVERT commands sent to on all MOSI lines is set to one, settling the RHD digital offset 
removal filters.  (See the RHD datasheet for more information on this function.) 

WireInResetRun[3]: TTL_out_mode 
When this bit is set high, the lower eight bits of the digital output lines (TTL_OUT[0] – TTL_OUT[7]) are put under control of FPGA-
implemented threshold comparators that provide logic high signals if waveforms routed to the ADCs exceed user-programmed 
thresholds.  (See TrigInDacConfig below for more information.)  The upper eight bits of the digital output lines (TTL_OUT[8] – 
TTL_OUT[15]) are controlled by the most significant byte of WireInTtlOut. 
When this bit is set low, all 16 digital output lines are controlled by WireInTtlOut. 
WireInResetRun[5:4]: unused 

WireInResetRun[12:6]: DAC_noise_slice 

The first two DACs are designed to be connected to audio left and right channels.  This variable slices out the central +/-16 x 
DAC_noise_slice LSBs of the signals in these two DACs and shifts the remaining signal up or down to zero, improving audibility 
of neural spikes. 

WireInResetRun[15:13]: DAC_gain 

The signals in all eight DACs are scaled by a factor of two raised to the power of DAC_gain.  A gain of 1, 2, 4, 8, 16, 32, 64, or 
128 may be specified in this way. 

WireInResetRun[16]: pipeout_block_throttle_override 
This bit controls a restriction on the minimum data chunk that can be transferred over the USB3 interface.  It should be set to zero 
for normal operation.  It is set to one briefly by the flush() function in rhxcontroller.cpp in order to clear all remaining data out of the 
FIFO. 

 

WireIn 0x01: WireInMaxTimeStep 
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This port conveys a 32-bit unsigned integer MaxTimeStep that indicates the maximum number of time steps (samples) that will 
run once data acquisition is started by pulsing TrigInSpiStart.  If SPI_run_continuous (in WireIn address 0x00) is set high, the 
value in this register is ignored.  Setting this register to zero will halt data acquisition, provided SPI_run_continuous is set to zero. 

 

WireIn 0x02: WireInSerialDigitalInCntl 
WireInSerialDigitalInCntl[0]: serial_CLK_manual 
WireInSerialDigitalInCntl[1]: serial_LOAD_manual 
These bits control two 16-to-1 digital multiplexer shift registers that read digital inputs and configuration switch settings.  The output 
of these shift registers are conveyed via WireOut 0x21.  These signals are controlled in the getNumSPIPorts() method in 
rhxcontroller.cpp. 

 

WireIn 0x03: WireInDataFreqPll 
TriggerIn 0x40: TrigInConfig 
WireInDataFreqPll[7:0]: “M” multiply parameter for clock frequency synthesizer 

WireInDataFreqPll[15:8]: “D” divide parameter for clock frequency synthesizer 

These parameters are used to set the RHD amplifier sampling frequency.  A 200 MHz reference clock is provided to the FPGA 
from an off-chip clock generator.  The output frequency of a programmable FPGA clock generator (a multi-mode clock manager, 
or MMCM) is given by: 

FPGA internal clock frequency = 200 MHz × (M / D) / 4 

M and D are “multiply” and “divide” integers used in the FPGA’s MMCM phase-locked loop (PLL) frequency synthesizer, and are 
subject to the following restrictions: 

• M must have a value in the range of 2 to 256. 
• D must have a value in the range of 1 to 256. 
• The ratio M / D must fall in the range of 0.05 to 3.33 

(See pages 85-86 of Xilinx document UG382 “Spartan-6 FPGA Clocking Resources” for more details.) 

For compatibility with software that also communicates with the original version of Rhythm USB3 and its digital clock manager 
(DCM), the above M,D calculation is used.  However, the Artix-7 FPGA that is used for the 7310 interface actually controls the 
output frequency with a different equation, detailed on page 72 of Xilinx document UG472 “7 series FPGAs Clocking Resources 
User Guide”.  Rhythm USB-7310 expects the original Rhythm USB3 M,D values and translates them into the M,D,O values used 
by the 7-series FPGAs. 

This variable-frequency clock drives the state machine that controls all SPI communication with the RHD chips.  A complete SPI 
cycle (consisting of one CS pulse and 16 SCLK pulses) takes 80 clock cycles.  The SCLK period is 4 clock cycles; the CS pulse is 
high for 14 clock cycles between commands. 

Rhythm USB-7310 samples all 32 channels and then executes 3 auxiliary commands that can be used to read and write from other 
registers on the chip.  Therefore, a complete cycle that samples from each amplifier channel takes 80 × (32 + 3) = 80 × 35 = 2800 
clock cycles.  So the per-channel sampling rate of each amplifier is 2800 times slower than the internal FPGA clock frequency. 

Based on these design choices, we can use the following values of M and D to generate the following useful amplifier sampling 
rates for electrophysiological applications. 

M D FPGA internal clock frequency per-channel sample rate per-channel sample period 
7 125 2.80 MHz 1.00 kS/s 1000.0 µs 
7 100 3.50 MHz 1.25 kS/s 800.0 µs 

21 250 4.20 MHz 1.50 kS/s 666.7 µs 
14 125 5.60 MHz 2.00 kS/s 500.0 µs 
35 250 7.00 MHz 2.50 kS/s 400.0 µs 
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21 125 8.40 MHz 3.00 kS/s 333.3 µs 
14 75 9.33 MHz 3.33 kS/s 300.0 µs 
28 125 11.20 MHz 4.00 kS/s 250.0 µs 
7 25 14.00 MHz 5.00 kS/s 200.0 µs 
7 20 17.50 MHz 6.25 kS/s 160.0 µs 

112 250 22.40 MHz 8.00 kS/s 125.0 µs 
14 25 28.00 MHz 10.00 kS/s 100.0 µs 
7 10 35.00 MHz 12.50 kS/s 80.0 µs 

21 25 42.00 MHz 15.00 kS/s 66.7 µs 
28 25 56.00 MHz 20.00 kS/s 50.0 µs 
35 25 70.00 MHz 25.00 kS/s 40.0 µs 
42 25 84.00 MHz 30.00 kS/s 33.3 µs 

 

To set a new clock frequency, assert new values for M and D and pulse TrigInConfig[0]: 
okCFrontPanel* dev; 
// Code to open Opal Kelly board not shown here. 
dev->SetWireInValue(0x03, (M << 8) + D);  // 0x03 = WireInDataFreqPll 
dev->UpdateWireIns(); 
dev->ActivateTriggerIn(0x40, 0);  // 0x40 = TrigInConfig 

If the board is reset, the sample rate will revert to 30 kS/s/channel. 

 

WireIn 0x04: WireInMisoDelay 
WireInMisoDelay[3:0]: MISO delay for Port A 
WireInMisoDelay[7:4]: MISO delay for Port B 
WireInMisoDelay[11:8]: MISO delay for Port C 
WireInMisoDelay[15:12]: MISO delay for Port D 
WireInMisoDelay[19:16]: MISO delay for Port E 
WireInMisoDelay[23:20]: MISO delay for Port F 
WireInMisoDelay[27:24]: MISO delay for Port G 
WireInMisoDelay[31:28]: MISO delay for Port H 

These eight 4-bit registers set the sampling delay applied to MISO1 and MISO2 inputs on each of the eight RHD SPI ports to 
account for cable propagation delays.  Each register takes a value between 0-15.  If the register is set to zero, MISO1 and MISO2 
on that port are sampled on the rising edge of each SCLK pulse.  Increasing the register value by one delays MISO sampling by 
one-quarter of an SCLK period.  Each SCLK period is equal to 1/700 of the per-channel sampling period. 

For example, if the per-channel amplifier sampling rate is set to 20 kS/s then the per-channel sampling period is 50 µs.  The SCLK 
period will then be 71.4 ns, so every unit increase in the MISO delay register will delay MISO sampling by 17.9 ns. 

In addition to the expected round-trip cable delays, there will also be delays due to the FPGA I/O and the RHD I/O.  The Xilinx 
Artix-7 FPGA has input and output pin delays of several nanoseconds.  The RHD has a typical I/O delay of 9.0 ns.  This total I/O 
delay, plus any delays added by additional circuitry (e.g., isolation buffers) should be added to any expected cable delays when 
calculating the optimum values for these registers. 

 

WireIn 0x05: WireInCmdRamAddr 
WireIn 0x06: WireInCmdRamBank 
WireIn 0x07: WireInCmdRamData 
TrigIn 0x40: TrigInConfig 
These registers are used to upload auxiliary command sequences to RAM banks on the FPGA.  To load a command into a 
particular RAM bank, the following sequence must be executed: 
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Use WireCmdRamAddr to a select an address in the range of 0-1023. 

Use WireInCmdRamBank to select a RAM bank in the range of 0-15. 

Use WireInCmdRamData to set the 16-bit MOSI command to be programmed. 

Pulse TrigInConfig[1] to program the MOSI command to the selected RAM bank and address for auxcmd1.  Pulse 
TrigInConfig[2] for auxcmd2.  Pulse TrigInConfig[3] for auxcmd3. 

Repeat this process to program command sequences into the 16 x 3 RAM banks on the FPGA.  Each RAM bank can hold up to 
1024 commands. 

The following example shows how to program the command WRITE(6, 128) to address 7 of RAM bank 3 in the auxcmd2 slot: 
okCFrontPanel* dev; 
// Code to open Opal Kelly board not shown here. 
 
unsigned int command = 0x8780;  // WRITE(6, 128) command. 
 
dev->SetWireInValue(0x05, 7);   // Set address to 7. 
dev->SetWireInValue(0x06, 3);   // Set RAM bank to 3. 
dev->SetWireInValue(0x07, command);  // Set command to be programmed. 
dev->UpdateWireIns(); 
dev->ActivateTriggerIn(0x40, 2);  // Load in RAM for auxcmd2. 

 

WireIn 0x08: WireInAuxCmdBank1 
WireInAuxCmdBank1[3:0]: AuxCmdBank1A 
WireInAuxCmdBank1[7:4]: AuxCmdBank1B 
WireInAuxCmdBank1[11:8]: AuxCmdBank1C 
WireInAuxCmdBank1[15:12]: AuxCmdBank1D 
WireInAuxCmdBank1[19:16]: AuxCmdBank1E 
WireInAuxCmdBank1[23:20]: AuxCmdBank1F 
WireInAuxCmdBank1[27:24]: AuxCmdBank1G 
WireInAuxCmdBank1[31:28]: AuxCmdBank1H 

Each one of these four-bit registers is used to select the RAM bank (0-15) that will be used to send MOSI commands to each port 
in the auxcmd1 auxiliary command slot. 

 

WireIn 0x09: WireInAuxCmdBank2 
WireInAuxCmdBank2[3:0]: AuxCmdBank2A 
WireInAuxCmdBank2[7:4]: AuxCmdBank2B 
WireInAuxCmdBank2[11:8]: AuxCmdBank2C 
WireInAuxCmdBank2[15:12]: AuxCmdBank2D 
WireInAuxCmdBank2[19:16]: AuxCmdBank2E 
WireInAuxCmdBank2[23:20]: AuxCmdBank2F 
WireInAuxCmdBank2[27:24]: AuxCmdBank2G 
WireInAuxCmdBank2[31:28]: AuxCmdBank2H 

Each one of these four-bit registers is used to select the RAM bank (0-15) that will be used to send MOSI commands to each port 
in the auxcmd2 auxiliary command slot. 

 

WireIn 0x0A: WireInAuxCmdBank3 
WireInAuxCmdBank3[3:0]: AuxCmdBank3A 
WireInAuxCmdBank3[7:4]: AuxCmdBank3B 
WireInAuxCmdBank3[11:8]: AuxCmdBank3C 
WireInAuxCmdBank3[15:12]: AuxCmdBank3D 
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WireInAuxCmdBank3[19:16]: AuxCmdBank3E 
WireInAuxCmdBank3[23:20]: AuxCmdBank3F 
WireInAuxCmdBank3[27:24]: AuxCmdBank3G 
WireInAuxCmdBank3[31:28]: AuxCmdBank3H 

Each one of these four-bit registers is used to select the RAM bank (0-15) that will be used to send MOSI commands to each port 
in the auxcmd3 auxiliary command slot. 

 

WireIn 0x0B: WireInAuxCmdLength 
WireInAuxCmdLength[9:0]: AuxCmdLength1 
WireInAuxCmdLength[19:10]: AuxCmdLength2 
WireInAuxCmdLength[29:20]: AuxCmdLength3 

Each one of these registers should be set to a number AuxCmdLength between 0 and 1023, indicating the index of the last valid 
command in the selected RAM banks for auxcmd1, auxcmd2, and auxcmd3, respectively.  For example, if a RAM bank contains 
128 commands that should repeat, set the register value to 127.  Note that command lengths must be the same for SPI Ports A 
through H. 

 

WireIn 0x0C: WireInAuxCmdLoop 
WireInAuxCmdLoop[9:0]: AuxCmdLoop1 
WireInAuxCmdLoop[19:10]: AuxCmdLoop2 
WireInAuxCmdLoop[29:20]: AuxCmdLoop3 

Each one of these registers should be set to a number AuxCmdLoop between 0 and 1023, indicating the auxiliary command RAM 
address that is jumped to after the command index reaches AuxCmdLength for auxcmd1, auxcmd2, and auxcmd3, respectively.  
To create a simple list of repeating commands, AuxCmdLoop should be set to zero.  To create a list of 50 commands where the 
first 10 commands execute only once and the next 40 command repeat in a loop, set AuxCmdLoop to 9 and AuxCmdLength to 
49. 

 

WireIn 0x0D: WireInLedDisplay 
WireInLedDisplay[7:0]: These bits control the eight red LEDs on the Opal Kelly board.  Setting bits to one turns LEDs on. 

 

WireIn 0x0E: WireInDacReref 
WireInDacReref[4:0]: DAC_reref_channel_sel 
WireInDacReref[9:5]: DAC_reref_stream_sel 
WireInDacReref[10]: DAC_reref_mode 

If DAC_reref_mode is set to one, the amplifier channel from stream DAC_reref_stream_sel and channel DAC_reref_channel_ 
sel is subtracted from all eight amplifier signals that are routed to the DACs.  If digital re-referencing is implemented in software, 
these registers may be used to add real time re-referencing to the DAC outputs. 

 

WireIns 0x0F, 0x10, 0x11, 0x12, and 0x13: unused 
These four-bit registers are used to select the data source for each of 32 data streams Rhythm USB-7310 uses to send data over 
the USB interface to the host computer.  The data streams for each setting of DataStreamSel are listed in the table below.  The 
last eight rows with the “DDR” designation support 64-channel RHD2164 chips that use double data rate (DDR) SPI to transfer 
MISO data on both the rising and falling edges of SCLK.  The traditional data streams sample MISO on the rising edges of SCLK, 
plus any delay defined by WireInMisoDelay.  The DDR data streams sample MISO on the falling edges of SCLK, plus any delay 
defined by WireInMisoDelay. 
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WireIn 0x14: WireInDataStreamEn 
Setting one of these 32 bits to one enables at particular data stream, so that its data is sent over the USB interface to the host 
computer.  Setting the bit to zero disables the stream, reducing USB bandwidth and FIFO usage. 

 

DataStreamEn bit Data Stream 
0 Port A, MISO1 
1 Port A, MISO1 DDR 
2 Port A, MISO2 
3 Port A, MISO2 DDR 
4 Port B, MISO1 
5 Port B, MISO1 DDR 
6 Port B, MISO2 
7 Port B, MISO2 DDR 
8 Port C, MISO1 
9 Port C, MISO1 DDR 

10 Port C, MISO2 
11 Port C, MISO2 DDR 
12 Port D, MISO1 
13 Port D, MISO1 DDR 
14 Port D, MISO2 
15 Port D, MISO2 DDR 
16 Port E, MISO1 
17 Port E, MISO1 DDR 
18 Port E, MISO2 
19 Port E, MISO2 DDR 
20 Port F, MISO1 
21 Port F, MISO1 DDR 
22 Port F, MISO2 
23 Port F, MISO2 DDR 
24 Port G, MISO1 
25 Port G, MISO1 DDR 
26 Port G, MISO2 
27 Port G, MISO2 DDR 
28 Port H, MISO1 
29 Port H, MISO1 DDR 
30 Port H, MISO2 
31 Port H, MISO2 DDR 

 

Any changes made to these bits do not take effect while data acquisition is running.  Data acquisition must be stopped and restarted 
to enable or disable data streams, so that the size of a data frame never changes during active acquisition. 

WireIn 0x15: WireInTtlOut 
WireInTtlOut[15:0]: TtlOut 

This register sets the 16 TTL output pins defined by Rhythm USB-7310.  (If TTL_out_mode is set to one, the lower eight TTL 
output pins are controlled by the FPGA threshold comparators.) 
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WireIn 0x16: WireInDacSource1 
WireIn 0x17: WireInDacSource2 
WireIn 0x18: WireInDacSource3 
WireIn 0x19: WireInDacSource4 
WireIn 0x1A: WireInDacSource5 
WireIn 0x1B: WireInDacSource6 
WireIn 0x1C: WireInDacSource7 
WireIn 0x1D: WireInDacSource8 
WireInDacSourceX[4:0]: DacSourceChannelX 
WireInDacSourceX[10:5]: DacSourceStreamX 
WireInDacSourceX[11]: DacSourceEnableX 

These registers route selected amplifier signals to the eight DACs that Rhythm USB-7310 supports.  For each DAC, the user may 
select an amplifier channel (0-31) and a data stream (nominally 0-31).  To enable the DAC, the DacSourceEnable bit must be set 
high.  If DacSourceStream is set to 32, the DAC will be controlled directly by the host computer via WireInDacManual; the 
DacSourceChannel parameter is ignored in this case. 

 

WireIn 0x1E: WireInDacManual 
WireInDacManual[15:0]: DacManual 

This WireIn is used to control DACs directly when their DacSourceStream parameter is set to 32 (see table above).  Typically, this 
WireIn can only be updated around 1,000 times per second in compiled C++ software, so it cannot be used to synthesize high-
frequency waveforms. 

 

WireIn 0x1F: WireInMultiUse 
WireInMultiUse is used in concert with TriggerIn signals to program other registers in the FPGA.  (See below.) 

 

TrigIn 0x40: TrigInConfig 
TrigInConfig[4]: EnableDacHighpassFilter 
TrigInConfig [5]: SetDacHighpassFilterCutoff 

Rhythm USB-7310 includes on-FPGA first-order high-pass filters that can be applied to the eight amplifier signals routed to the 
DACs and threshold comparators (see above).  These high-pass filters can be used to remove low-frequency local field potentials 
(LFPs) from wideband neural signals before detecting spikes using the programmable comparators.  The bits in this TrigIn are 
used to enable the high-pass filters and to program their cutoff frequency. 

To enable or disable the high-pass filters, apply a one or zero, respectively, to WireInMultiUse and pulse TrigInConfig[4].  To set 
the filter cutoff frequency, apply the filter coefficient to WireInMultiUse and pulse TrigInConfig[5]. 
The filter coefficient is a 16-bit unsigned integer that is calculated as follows: 

Filter coefficient = 65536 · [1 – exp(–2π·fcutoff/fsample)] 

Note that the filter coefficient depends on the amplifier sampling frequency, so if this is changed, the filter coefficient should be 
updated appropriately. 

TrigInConfig [6]: EnableExternalFastSettle 
TrigInConfig [7]: SetExternalFastSettleChannel 

Rhythm USB-7310 includes real-time control of the “fast settle” function on all connected RHD chips.  Enabling fast settle effectively 
blanks the amplifiers and prevents them from saturating during exposure to large transient input signals (e.g., due to nearby 
stimulation).  To enable or disable real-time control of the fast settle function, apply a one or zero, respectively, to WireInMultiUse 
and pulse TrigInConfig[6].  To select the TTL digital input used for fast settle control, apply a number between 0 and 15 to 
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WireInMultiUse and pulse TrigInConfig[7].  There is a latency of 4-5 amplifier sampling periods from the digital input changing 
to the fast settle function turning on or off. 

TrigInConfig[8]: SetSpiPortLeds 

Eight LEDs can be connected to the Rhythm USB-7310 FPGA as general-purpose indicators.  For example, they can be illuminated 
when an RHD chip is detected on a particular SPI port.  To set these eight bits, apply a value between 0 and 255 to WireInMultiUse 
and pulse TrigInConfig[8]. 
TrigInConfig[9]: SetUSB3BlockSize 
TrigInConfig[10]: SetDdrBlockSize 

These triggers are used to set parameters for SuperSpeed USB-7310 data transfer.  The variables USB3BlockSize and 
DdrBlockSize are set by placing a value on WireInMultiUse and pulsing these trigger lines.  For optimal data transfer, it is 
recommended to set USB3BlockSize to 256 (the actual USB block size will be four times this value) and DdrBlockSize to 32. 

 
TrigIn 0x41: TrigInSpiStart 
See WireIn 0x00 description above. 

 
TrigIn 0x42: TrigInDacConfig 
TrigInDacConfig[0]: SetDac1ThresholdLevel 
TrigInDacConfig [1]: SetDac2ThresholdLevel 
TrigInDacConfig [2]: SetDac3ThresholdLevel 
TrigInDacConfig [3]: SetDac4ThresholdLevel 
TrigInDacConfig [4]: SetDac5ThresholdLevel 
TrigInDacConfig [5]: SetDac6ThresholdLevel 
TrigInDacConfig [6]: SetDac7ThresholdLevel 
TrigInDacConfig [7]: SetDac8ThresholdLevel 

TrigInDacConfig [8]: SetDac1ThresholdPolarity 
TrigInDacConfig [9]: SetDac2ThresholdPolarity 
TrigInDacConfig [10]: SetDac3ThresholdPolarity 
TrigInDacConfig [11]: SetDac4ThresholdPolarity 
TrigInDacConfig [12]: SetDac5ThresholdPolarity 
TrigInDacConfig [13]: SetDac6ThresholdPolarity 
TrigInDacConfig [14]: SetDac7ThresholdPolarity 
TrigInDacConfig [15]: SetDac8ThresholdPolarity 

Rhythm USB-7310 includes on-FPGA threshold comparators that produce low-latency digital signals indicating if each waveform 
routed to one of the eight DACs exceeded user-programmed levels.  The bits in this TrigIn are used to program DAC threshold 
levels and polarities.  To program a DAC threshold level, apply the desired value to WireInMultiUse and pulse one of the bottom 
eight bits in TrigInDacConfig. 

To program a DAC threshold polarity, apply either a zero or one to WireInMultiUse and pulse one of the top eight bits in 
TrigInDacConfig.  A polarity value of zero will cause the corresponding digital output to go high when the signal routed to that 
DAC equals or falls below the DAC threshold level.  A polarity value of one will cause the digital output to go high when the signal 
routed to that DAC equals or rises above the DAC threshold level. 

TrigInDacConfig [16]: EnableExternalDigOutPortA 
TrigInDacConfig [17]: EnableExternalDigOutPortB 
TrigInDacConfig [18]: EnableExternalDigOutPortC 
TrigInDacConfig [19]: EnableExternalDigOutPortD 
TrigInDacConfig [20]: EnableExternalDigOutPortE 
TrigInDacConfig [21]: EnableExternalDigOutPortF 
TrigInDacConfig [22]: EnableExternalDigOutPortG 
TrigInDacConfig [23]: EnableExternalDigOutPortH 
TrigInDacConfig [24]: SetExternalDigOutChannelPortA 
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TrigInDacConfig [25]: SetExternalDigOutChannelPortB 
TrigInDacConfig [26]: SetExternalDigOutChannelPortC 
TrigInDacConfig [27]: SetExternalDigOutChannelPortD 
TrigInDacConfig [28]: SetExternalDigOutChannelPortE 
TrigInDacConfig [29]: SetExternalDigOutChannelPortF 
TrigInDacConfig [30]: SetExternalDigOutChannelPortG 
TrigInDacConfig [31]: SetExternalDigOutChannelPortH 

Rhythm USB-7310 includes real-time control of the auxiliary digital output pin (auxout) on each RHD chip connected to the FPGA.  
To enable or disable real-time control of auxiliary digital output pins on Ports A through H, apply a one or zero to WireInMultiUse 
and pulse one of TrigInDacConfig[16-23].  To select the TTL digital input used for auxiliary digital output control, apply a number 
between 0 and 15 to WireInMultiUse and pulse one of TrigInDacConfig[24-31].  There is a latency of 4-5 amplifier sampling 
periods from the digital input changing to the auxout pin on the RHD chip turning on or off. 

 

 

USB Software Endpoints: WireOut Ports 
USB-7310 WireOut ports are virtual 32-bit wires that transfer data asynchronously from the FPGA to the host computer.  Up to 32 
WireOut ports (with addresses from 0x20 to 0x3F) are available for use with each Opal Kelly module.  The following C++ code 
shows how data is received from WireOut ports. 
okCFrontPanel* dev; 
// Code to open Opal Kelly board not shown here. 
 
// We must first execute UpdateWireOuts to refresh WireOut values on host computer. 
dev->UpdateWireOuts(); 
 
// Read from WireOut 0x20 endpoint. 
unsigned int fromFpga; 
fromFpga = dev->GetWireOutValue(0x20); 

WireOut 0x20: WireOutNumWords 
This port is used to transfer a 32-bit unsigned integer NumWords that indicates the total number of 16-bit words contained in the 
USB FIFO on the Opal Kelly board.  Before executing a ReadFromPipeOut command, the host computer should first read this 
number to ensure that sufficient data is present in the FIFO buffer.  Otherwise, underflow will occur and corrupted data will be 
transferred to the computer.  (Note that NumWords reports the number of 16-bit words in the FIFO, while ReadFromPipeOut 
operates at the byte level.)  These ports should also be monitored to prevent buffer overflow.  The FIFO can hold slightly over 226 
= 67,108,864 words, but in practice it should never be allowed to get close to its maximum capacity. 

 

WireOut 0x21: WireOutSerialDigitalIn 
WireOutSerialDigitalIn[0]: TtlInSerial 
WireOutSerialDigitalIn[1]: TtlInSerialExp 
WireOutSerialDigitalIn[2]: ExpanderDetect 
WireOutSerialDigitalIn[3]: ExpanderId1 

TtlInSerial and TtlInSerialExp are used to sense the output of two 16-to-1 digital multiplexer shift registers controlled by WireIn 
0x02.  ExpanderDetect and ExpanderId1 are used to sense the presence of an optional I/O Expander module. 

 

WireOut 0x22: WireOutSpiRunning 
WireOutSpiRunning[0]: SpiRunning 

This bit is high while data acquisition is running and low when it has stopped. 
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WireOut 0x23: WireOutTtlIn 
WireOutTtlIn[15:0]: TtlIn 

This register returns the values of the 16 TTL input pins defined by Rhythm USB-7310.  (These pins are only sampled 
synchronously and updated when the RHD amplifiers are running.) 

 

WireOut 0x24: WireOutDataClkLocked 
WireOutDataClkLocked[0]: DataClkLocked 

This bit goes high when the digital clock manager has successfully stabilized to a new frequency.  When WireInDataFreqPll is 
changed and DcmProgTrigger is pulsed, it can take several milliseconds for the new clock frequency to stabilize.  This pin should 
be monitored after frequency changes, and no data acquisition should be performed until this bit goes high. 

WireOutDataClkLocked[1]: DcmProgDone 

When WireInDataFreqPll is changed and DcmProgTrigger is pulsed, it can take several milliseconds before the digital clock 
manager is ready to be changed to yet another frequency.  After any frequency changes this pin should be monitored, and no more 
frequency changes should be attempted until this bit goes high. 

 

WireOut 0x25: WireOutBoardMode 
WireOutBoardMode[3:0]: BoardMode 

BoardMode is a 4-bit value set by direct inputs to the FPGA.  These pins are typically connected to DIP switches that are set to 
identify different types of boards. 

 

WireOut 0x26 – 0x3D: unused 
 

WireOut 0x3E: WireOutBoardId 
This WireOut returns a constant value of 700 (decimal). 

 

WireOut 0x3F: WireOutBoardVersion 
This WireOut returns a constant value, identifying the version of Rhythm USB-7310 running on the board (currently 1). 

 

 

USB Software Endpoints: BTPipeOut Ports 
USB-7310 BTPipeOut ports are virtual 8-bit buses (“block throttled” pipe outs) that stream data bytes synchronously from the FPGA 
to the host computer.  Up to 32 BTPipeOut ports (with addresses from 0xA0 to 0xBF) are available for use with each Opal Kelly 
module.  The following C++ code shows how data is streamed over BTPipeOut ports. 
okCFrontPanel* dev; 
// Code to open Opal Kelly board not shown here. 
 
// Allocate buffer to store 64 kBytes. 
unsigned char usbBuffer[65536]; 
 
// Read 64 kBytes from PipeOut 0xA0 into buffer. 
long numBytesRead, numBytesToRead; 
const int USB3_BLOCK_SIZE = 1024; 
numBytesToRead = 65536; 
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numBytesRead = dev->ReadFromBlockPipeOut(0xA0, USB3_BLOCK_SIZE, numBytesToRead, 
                                           usbBuffer); 
// Note: numBytesRead will be negative if read failed. 
 
 
 
// 16-bit words are sent least-significant-byte first. 
unsigned int firstWord; 
firstWord = (usbBuffer[1] << 8) | usbBuffer[0]; 

 

In order to minimize communication overhead and achieve maximum USB transfer speeds, Opal Kelly recommends reading from 
BTPipeOuts in relatively large data blocks.  Reading approximately 30 milliseconds of accumulated amplifier data from the board 
at a time will provide adequate USB data rates in most cases.  See the Opal Kelly FrontPanel User’s Manual for more information. 

 

BTPipeOut 0xA0: PipeOutData 
This BTPipeOut is used to stream data from all RHD chips (and several additional data sources) through the FPGA to the host 
computer.  The BTPipeOut is backed by a large FIFO implemented using the 1 GByte SDRAM (of which 128 MBytes are used) on 
the Opal Kelly board.  This FIFO module allows continuously-streaming data (e.g., from multiple RHD chips to be transferred 
smoothly over a USB interface to a computer that will grab the data in bursts, and may be unresponsive for a brief time due to 
multitasking or other operating system overhead). 

There is no mechanism in this FIFO to protect against underflow.  That is, if the computer tries to read more data than the FIFO is 
currently holding, the FIFO will just repeat the last word after it runs out of data.  To prevent underflow, it is essential for the host 
to monitor the value of NumWords (WireOut 0x20) and never attempt to read more words than the FIFO contains. 

Example: 
okCFrontPanel* dev; 
// Code to open Opal Kelly board and start SPI operation not shown here. 
 
// Allocate buffer to store data. 
unsigned char usbBuffer[BUFFERSIZE]; 
 
// Wait until enough data is available in the FIFO... 
unsigned int numWordsAvailable = 0; 
while (numWordsAvailable < BUFFERSIZE / 2) { 
 dev->UpdateWireOuts(); 
numWordsAvailable = dev->GetWireOutValue(0x20); 
} 
 
// Remember, NumWords (WireOut 0x20) returns the number of 16-bit words in the 
// FIFO, but ReadFromBlockPipeOut() operates on bytes.  Factor of two difference! 
 
// Read bytes from BTPipeOut 0xA0 into buffer. 
long numBytesRead; 
const int USB3_BLOCK_SIZE = 1024; 
numBytesRead = dev->ReadFromBlockPipeOut(0xA0, USB3_BLOCK_SIZE, BUFFERSIZE, 
                                         usbBuffer); 
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Rhythm USB-7310 Verilog Code Description 
Verilog Source Code 
The Rhythm USB-7310 interface is described by a set of Verilog files that may be compiled into a bitfile using the free Xilinx Vivado 
software.  While Intan Technologies provides a pre-compiled bitfile, developers may wish to modify the Rhythm USB-7310 code 
for custom applications.  The primary Verilog files are described below. 

main.v: This is the top-level Rhythm USB-7310 Verilog code that defines all FPGA I/O, executes the main state machine running 
all SPI I/O with the RHD chips, and defines connections to all other modules in the Verilog files listed below. 

SDRAM_FIFO.v: This code makes use of 128 MBytes of the off-FPGA 1 GByte SDRAM to implement a large FIFO buffer.  This 
Verilog file uses a number of other miscellaneous Verilog files to implement the SDRAM controller.  Many of these files were 
derived from the Opal Kelly RamTest Verilog example. 

variable_freq_clk_generator.v: This module sets up the programmable-frequency clock used to run the RHD chips at user-
selectable sampling rates. 

MISO_phase_selector.v: This small module implements the user-programmable delay in sampling MISO SPI lines to compensate 
for signal propagation delay on long cables. 

RAM_bank.v and RAM_block.v: These files use on-FPGA memory to implement multiple 1024-word RAM banks for storing 
auxiliary command sequences. 

DAC_output_scalable_HPF.v: This module implements a serial interface to an optional off-board Analog Devices AD5662 16-bit 
DAC, as well as variable gain, noise slicing, high-pass filtering, and threshold comparator functions. 

ADC_input.v: This module implements a serial interface to an optional off-board Analog Devices AD7980 16-bit ADC. 

okLibrary.v: This Verilog file provided by Opal Kelly implements the communication endpoints (e.g., WireIns, BTPipeOuts) in the 
FPGA.  It should not be modified. 

xem7310.xdc: This file defines the location (i.e., pin number) and characteristics of all FPGA I/O signals. 

main.bit: This is the bitfile that is generated by compiling all the above Verilog files with the Xilinx Vivado software.  This file should 
be renamed to ConfigRHDController_7310.bit and copied into the directory containing the C++ executable file that opens and 
configures the Opal Kelly board. 
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Main State Machine Description 
The heart of the Rhythm USB-7310 code is a finite state machine that cycles through a pattern of 80 repeating states.  These 80 
states execute a single SPI cycle and are illustrated in the diagram below.  (Refer to the RHD datasheet for more information on 
the SPI communication protocol.) 

 
 

Each SCLK period consists of four states labeled ms_clkX_a through ms_clkX_d, where X advances from 1 to 16.  After 16 
complete SCLK cycles, there are an additional two states (ms_clk17_a and ms_clk17_b) to create a delay between the falling 
edge of the last SCLK pulse and the rising edge of CS.  The CS signal is held high for 14 states labeled ms_cs_a through ms_cs_n.  
After all 80 states have completed, the variable channel is incremented.  If channel exceeds 34, it is reset to 0.  This variable 
tracks the repeating series of 35 commands send on the MOSI line (32 CONVERT commands for each amplifier channel and three 
auxiliary commands). 

Data is transferred to the FIFO (and thence to the USB interface) during particular states of this main state machine.  One 16-bit 
word can be transferred to the FIFO during each state. 

• The 64-bit header magic number is sent during states ms_clk1_b through ms_clk2_a only when channel = 0. 

• The timestamp is sent during states ms_clk2_b and ms_clk2_c only when channel = 0. 

• Data streams 1-32 are sent during states ms_clk2_d through ms_clk10_c. 

• States ms_clk17_a, ms_clk17_b, and ms_cs_a are used to send up to three filler words only when channel = 34.  
These filler words ensure that each data frame consists of an integer multiple of four 16-bit words to satisfy FIFO 
constraints. 

• States ms_cs_b through ms_cs_i are used to send data from the eight optional AD7980 ADCs only when channel = 
34. 

• State ms_cs_j is used to send the 16 TTL inputs only when channel = 34. 

• State ms_cs_k is used to send the current value of the 16 TTL outputs only when channel = 34.  This information may 
be useful to users who wish to reconstruct exact timings based on TTL output events. 
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Rhythm USB-7310 C++ API 
Intan Technologies provides a basic, open-source C++ application programming interface (API) for controlling the Rhythm USB-
7310 FPGA interface described above.  The API consists of three C++ classes: RHXController, RHXRegisters, and 
RHXDataBlock.  These classes are defined in *.cpp and *.h files named rhxcontroller, rhxregisters, and rhxdatablock.  
Additionally, any application must link to the Opal Kelly library file okFrontPanel.lib. 

The Rhythm USB-7310 API is written using standard C++ and uses the string, vector, cmath, mutex, and deque classes from 
the C++ Standard Template Library (STL). 

The public member functions of each class in the Rhythm USB-7310 API are described below. 

 

RHXController Class Reference 
This class provides access to and control of the Opal Kelly XEM7310 USB/FPGA interface board running the Rhythm USB-7310 
interface Verilog code.  Only one instance of the RHXController object is needed to control a Rhythm USB-7310-based FPGA 
interface.  Methods in this class are designed to be thread-safe using a mutex (mutual exclusion) variable to ensure this. 

The public member functions of the RHXController class are listed below. 

 

RHXController() 
Constructor. 

 

~RHXController() 
Destructor. 

 

bool isSynthetic() 
Returns if this controller is synthetic (used for demonstration purposes when Intan hardware may not be present).  Returns false 
if this RHXController represents a real Opal Kelly XEM7310-A75 board. 

 
bool isPlayback() 

Returns if this controller represents a playback controller (used for data playback purposes when new data acquisition is not 
desired). Returns false if this RHXController represents a real Opal Kelly XEM7310-A75 board. 

 
AcquisitionMode acquisitionMode() 

Returns the mode that this controller is running in. Acquisition modes are given using the AcquisitionMode enumeration; 
defined values are: 

 LiveMode 
 SyntheticMode 
 PlaybackMode 

 

Returns LiveMode if this RHXController represents a real Opal Kelly XEM7310-A75 board. 

 

vector<string> listAvailableDeviceSerials() 
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Lists all available Opal Kelly devices currently connected to this computer.  Returns a vector of strings containing each device’s 
serial number. 

 

int open(const string &boardSerialNumber) 
Finds an Opal Kelly XEM7310-A75 board attached to a USB port with the given serial number and opens it.  Returns 1 if 
successful. Returns -2 if an XEM7310 board is not found. 

 

int open() 
Finds the first Opal Kelly board attached to a USB port and opens it.  Returns 1 if successful.  Returns -2 if an Opal Kelly board 
is not found.  Note that this doesn’t necessarily open a XEM7310 board, so if any other Opal Kelly boards are connected, the 
above function to open a specific board should be used instead. 

 

bool uploadFpgaBitFile(const string &filename) 
Uploads the Rhythm USB-7310 configuration file (i.e., bitfile) to the Xilinx FPGA on the open Opal Kelly board.  Returns true if 
successful. 

 

void initialize() 
Initializes Rhythm USB-7310 FPGA registers to default values. 

 

static void resetBoard(okCFrontPanel* dev_) 
void resetBoard() 

Resets the FPGA.  This clears all auxiliary command RAM banks, clears the USB FIFO, and resets the per-channel sampling 
rate to its default value of 30.0 kS/s/channel.  The static version of this method also requires a pointer to the okCFrontPanel 
device. 

 

void resetFpga() 
Performs a low-level reset of the FPGA.  This can be called when closing an application to make sure everything has stopped. 

 

bool setSampleRate(AmplifierSampleRate newSampleRate) 
Sets the per-channel sampling rate of the RHD chips connected to the Rhythm USB-7310 FPGA.  Returns false if an 
unsupported sampling rate is requested.  Sample rates are given using the AmplifierSampleRate enumeration; defined values 
are: 

 SampleRate1000Hz 
 SampleRate1250Hz 
 SampleRate1500Hz 
 SampleRate2000Hz 
 SampleRate2500Hz 
 SampleRate3000Hz 
 SampleRate3333Hz 
 SampleRate4000Hz 
 SampleRate5000Hz 
 SampleRate6250Hz 
 SampleRate8000Hz 
 SampleRate10000Hz 
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 SampleRate12500Hz 
 SampleRate15000Hz 
 SampleRate20000Hz 
 SampleRate25000Hz 
 SampleRate30000Hz 

 

double getSampleRate() 
static double getSampleRate(AmplifierSampleRate sampleRate_) 

Returns the current (non-static) or provided AmplifierSampleRate enumeration (static) as a per-channel sampling rate (in Hz) 
floating-point number. 

 

AmplifierSampleRate getSampleRateEnum() 
Returns the current per-channel sampling rate as an AmplifierSampleRate enumeration. 

 

static string getSampleRateString(AmplifierSampleRate sampleRate_) 
Returns the provided AmplifierSampleRate enumeration as a human-readable string, from “1 kHz” to “30 kHz”. 

 

static AmplifierSampleRate nearestSampleRate(double rate, double percentTolerance= 1.0) 
Returns the nearest supported sample rate to the desired rate, within the given tolerance, as an AmplifierSampleRate 
enumeration. 

 

void uploadCommandList(const vector<unsigned int> &commandList, AuxCmdSlot auxCommandSlot, int bank) 
Uploads a command list (generated by an instance of the RHXRegisters class) to a particular auxiliary command slot and RAM 
bank (0-15) on the FPGA.  Command slots are given using the AuxCmdSlot enumeration; defined values are: 

 AuxCmd1 
 AuxCmd2 
 AuxCmd3 
 AuxCmd4 (not compatible with RHD XEM7310 Interface) 

 

void printCommandList(const vector<unsigned int> &commandList) 
Prints a command list (generated by an instance of the RHXRegisters class) to the console in readable form, for diagnostic 
purposes. 

 

int findConnectedChips(vector<ChipType> &chipType, vector<int> &portIndex, vector<int> &commandStream, 
vector<int> &numChannelsOnPort, bool synthMaxChannels = false) 

Scan all SPI ports to find all connected RHD amplifier chips.  Read the chip ID from on-chip ROM register to determine the 
number of amplifier channels on each port.  This process is repeated at all possible MISO delays in the FPGA to determine the 
optimum MISO delay for each port to compensate for variable cable length. 

This function returns three vectors of length maxNumDataStreams(): chipType (the type of chip connected to each data stream); 
portIndex (the SPI port number [A=1, B=2,…] associated with each data stream); and commandStream (the stream index for 
sending commands to the FPGA for a particular read stream index).  This function also returns a vector of length 
maxNumSPIPorts(): numChannelsOnPort (the total number of amplifier channels on each port). 
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This function normally returns 1.  A value of -1 or -2 can be returned under certain conditions if a USB Interface Board is being 
used, but for the RHD XEM7310 Interface this function will always return 1. 

The synthMaxChannels argument is only used for synthetic controllers, and should always be left false by default for real RHD 
XEM7310 boards. 

The type of chip is specified using the ChipType enumeration; defined values are: 

 NoChip 
 RHD2132Chip 
 RHD2216Chip 
 RHD2164Chip 
 RHS2116Chip (not compatible with RHD XEM7310 Interface) 
 RHD2164MISOBChip 
  
 

void selectAuxCommandBank(BoardPort port, AuxCmdSlot auxCommandSlot, int bank) 
Selects an auxiliary command slot (AuxCmd1, AuxCmd2, or AuxCmd3) and bank (0-15) for a particular SPI port.  The SPI port 
is specified using the BoardPort enumeration; defined values are: 

 PortA 
 PortB 
 PortC 
 PortD 
 PortE 
 PortF 
 PortG 
 PortH 
 
 
void selectAuxCommandBankAllPorts(AuxCmdSlot auxCommandSlot, int bank) 

Selects an auxiliary command slot (AuxCmd1, AuxCmd2, or AuxCmd3) and bank (0-15) for all SPI ports. 

 

void selectAuxCommandLength(AuxCmdSlot auxCommandSlot, int loopIndex, int endIndex) 
Specifies a command sequence end point (endIndex = 0-1023) and command loop index (loopIndex = 0-1023) for a particular 
auxiliary command slot (AuxCmd1, AuxCmd2, or AuxCmd3). 

 

void setContinuousRunMode(bool continuousMode); 
Sets the FPGA to run continuously once started (if continuousMode is set to true) or to run until maxTimeStep is reached (if 
continuousMode is set to false). 

 

void setMaxTimeStep(unsigned int maxTimeStep) 
Sets maxTimeStep for cases where continuousMode = false. 

 

void run() 
Starts SPI data acquisition. 

 

bool isRunning() 
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Returns true if the FPGA is currently running SPI data acquisition. 

 

unsigned int getNumWordsInFifo() 
Returns the number of 16-bit words in the USB FIFO.  The user should never attempt to read more data than the FIFO currently 
contains, as it is not protected against underflow. 

 

unsigned int getLastNumWordsInFifo() 
Returns the most recently measured number of 16-bit words in the USB FIFO.  Does not directly read this value from the USB 
port, and so may be out of date, but does not have to wait on other USB access to finish in order to execute. 

 

unsigned int getLastNumWordsInFifo(bool &hasBeenUpdated) 
Returns the most recently measured number of 16-bit words in the USB FIFO.  Does not directly read this value from the USB 
port, and so may be out of date, but does not have to wait on other USB access to finish in order to execute.  The boolean 
variable hasBeenUpdated is set to indicate if this value has been updated since the last time this function was called. 

 

unsigned int fifoCapacityInWords() 
Returns the number of 16-bit words in the USB SDRAM FIFO can hold (67,108,864).  The FIFO can actually hold a few hundred 
thousand words more than this due to the on-FPGA mini-FIFOs used to interface with the SDRAM, but this function provides a 
conservative estimate of maximum FIFO capacity. 

 

void setCableDelay(BoardPort port, int delay) 
Sets the delay for sampling the MISO line on a particular SPI port (PortA through PortH), in integer clock steps, where each 
clock step is 1/2800 of a per-channel sampling period.  Cable delay should be updated after any changes are made to the 
sampling rate, since cable delay calculations are based on the clock period. 

Most users will probably find it more convenient to use setCableLengthMeters or setCableLengthFeet instead of using 
setCableDelay directly. 

 

int getCableDelay(BoardPort port) 
void getCableDelay(vector<int> &delays) 
Returns the last delay set on a particular SPI port (PortA through PortH), or all ports, in integer clock steps. 

 

void setCableLengthMeters(BoardPort port, double lengthInMeters) 
void setCableLengthFeet(BoardPort port, double lengthInFeet) 

Sets the delay for sampling the MISO line on a particular SPI port (PortA through PortH) based on the length of the cable 
between the FPGA and the RHD chip (in meters or feet).  Cable delay should be updated after any changes are made to the 
sampling rate, since cable delay calculations are based on the clock period. 

 

double estimateCableLengthMeters(int delay) 
double estimateCableLengthFeet(int delay) 

Based on a delay setting used in setCableDelay, these functions return the estimated cable length corresponding to this setting. 
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void setDspSettle(bool enabled); 
Turns on or off the DSP settle function in the FPGA.  (This only executes when CONVERT commands are executed by the 
RHD.) 

 

void enableDataStream(int stream, bool enabled) 
Enables (if enabled is true) or disables (if enabled is false) one of the 32 available USB data streams (0-31).  The data streams 
are assigned the following numbers: 

stream Data Stream 
0 Port A, MISO1 
1 Port A, MISO1 DDR 
2 Port A, MISO2 
3 Port A, MISO2 DDR 
4 Port B, MISO1 
5 Port B, MISO1 DDR 
6 Port B, MISO2 
7 Port B, MISO2 DDR 
8 Port C, MISO1 
9 Port C, MISO1 DDR 

10 Port C, MISO2 
11 Port C, MISO2 DDR 
12 Port D, MISO1 
13 Port D, MISO1 DDR 
14 Port D, MISO2 
15 Port D, MISO2 DDR 
16 Port E, MISO1 
17 Port E, MISO1 DDR 
18 Port E, MISO2 
19 Port E, MISO2 DDR 
20 Port F, MISO1 
21 Port F, MISO1 DDR 
22 Port F, MISO2 
23 Port F, MISO2 DDR 
24 Port G, MISO1 
25 Port G, MISO1 DDR 
26 Port G, MISO2 
27 Port G, MISO2 DDR 
28 Port H, MISO1 
29 Port H, MISO1 DDR 
30 Port H, MISO2 
31 Port H, MISO2 DDR 

 

int getNumEnabledDataStreams() 
Returns the total number of enabled USB data streams. 
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ControllerType getType() 
Returns the type of this controller.  This should always return ControllerRecordUSB3 for the RHD XEM7310 interface.  The 
type is specified using the ControllerType enumeration; defined values are: 

 ControllerRecordUSB2 (not compatible with RHD XEM7310 Interface) 
 ControllerRecordUSB3 
 ControllerStimRecord (not compatible with RHD XEM7310 Interface) 
 

int maxNumDataStreams() 
static int maxNumDataStreams(ControllerType type_) 

Returns the total number of data streams for this controller’s type (non-static) or a controller of the given type (static).  This 
returns 32 for the RHD XEM7310 interface.  The type of controller is specified with the ControllerType enumeration, defined 
above. 

 

int maxNumSPIPorts() 
static int maxNumSPIPorts(ControllerType type_) 

Returns the maximum number of SPI ports for this controller’s type (non-static) or a controller of the given type (static).  This 
returns 8 for the RHD XEM7310 interface.  The type of controller is specified with the ControllerType enumeration, defined 
above. 

 

int boardMode() 
static int boardMode(ControllerType type_) 

Returns the board mode for this controller’s type (non-static) or a controller of the given type (static).  This returns 13 for the 
RHD XEM7310 interface.  Note that this doesn’t actually read the FPGA’s digital input pins set on the physical controller (this is 
done through the getBoardMode() method) and instead just reports the software variable associated with this controller. 

 

static int numAnalogIO(ControllerType type_, bool expanderConnected_) 
Returns the number of Analog Inputs/Outputs for a controller of the given type.  For the RHD XEM7310 interface, this will return 
8 if an I/O expander is connected, otherwise this will return 2. 

 

static int numDigitalIO(ControllerType type_, bool expanderConnected_) 
Returns the number of Digital Inputs/Outputs for a controller of the given type.  For the RHD XEM7310 interface, this will return 
16 if an I/O expander is connected, otherwise this will return 2. 

 

static string getAnalogInputChannelName(ControllerType type_, int channel_) 
Returns the name of the specified Analog Input channel for the given type.  For the RHD XEM7310 interface, this will return 
“ANALOG-IN-1” to “ANALOG-IN-8”. 

 

static string getAnalogOutputChannelName(ControllerType type_, int channel_) 
Returns the name of the specified Analog Output channel for the given type.  For the RHD XEM7310 interface, this will return 
“ANALOG-OUT-1” to “ANALOG-OUT-8”. 

 

static string getDigitalInputChannelName(ControllerType type_, int channel_) 
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Returns the name of the specified Digital Input channel for the given type.  For the RHD XEM7310 interface, this will return 
“DIGITAL-IN-01” to “DIGITAL-IN-16”. 

 

static string getDigitalOutputChannelName(ControllerType type_, int channel_) 
Returns the name of the specified Digital Output channel for the given type.  For the RHD XEM7310 interface, this will return 
“DIGITAL-OUT-01” to “DIGITAL-OUT-16”. 

 

static string getAnalogIOChannelNumber(ControllerType type_, int channel_) 
Returns the number of the specified Analog I/O channel for the given type.  For the RHD XEM7310 interface, this will return “1” 
to “8”. 

 

static string getDigitalIOChannelNumber(ControllerType type_, int channel_) 
Returns the number of the specified Digital I/O channel for the given type.  For the RHD XEM7310 interface, this will return “01” 
to “16”. 

 

static string getBoardTypeString(ControllerType type_) 
Returns the type of the controller as a string.  For the RHD XEM7310 interface, this will return “ControllerRecordUSB3”. 

 

void clearTtlOut() 
Sets all 16 bits of the digital TTL output lines on the FPGA to zero. 

 

void setTtlOut(const int* ttlOutArray) 
Sets the 16 bits of the digital TTL output lines on the FPGA high or low according to an integer array.  The length-16 array 
ttlOutArray should contain values of 0 or 1. 

 
void setAllDacsToZero(); 

Set all DACs to midline value (zero).  DAC values are only updated when SPI ports are running. 

 

void setDacManual(int value) 
Sets the manual AD5662 DAC control (DacManual) WireIn to value (0-65536).  DAC values are only updated when SPI ports 
are running. 

 

void setLedDisplay(const int* ledArray) 
Sets the eight red LEDs on the Opal Kelly XEM7310 board according to a length-8 integer array. 

 
void setSpiLedDisplay(const int* ledArray) 

Sets the eight red LEDs on the front panel SPI ports according to a length-8 integer array. 

 

void enableDac(int dacChannel, bool enabled) 
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Enables (if enabled is true) or disables (if enabled is false) AD5662 DACs connected to the FPGA. 

 

void setDacGain(int gain) 
Scales the digital signals to all eight AD5662 DACs by a factor of 2gain, where gain is between 0 and 7. 

 

void setAudioNoiseSuppress(int noiseSuppress) 
Sets the noise slicing region for DAC channels 1 and 2 (i.e., audio left and right) to +/-16 x noiseSuppress LSBs, where 
noiseSuppress is between 0 and 127.  This improves the audibility of weak neural spikes in noisy waveforms. 

 

void selectDacDataStream(int dacChannel, int stream) 
void selectDacDataChannel(int dacChannel, int dataChannel) 

Assigns a particular data stream (0-31) and amplifier channel (0-31) to an AD5662 DAC channel (0-7).  Setting stream to 32 
selects the DacManual source. 

 

void enableDacHighpassFilter(bool enable) 
Enables (if enabled is true) or disables (if enabled is false) the first-order high-pass filters implemented in the FPGA on all eight 
DAC/comparator channels.  These filters may be used to remove low-frequency local field potential (LFP) signals from neural 
signals to facilitate spike detection while still recording the complete wideband data. 

 

void setDacHighpassFilter(double cutoff) 
Sets a cutoff frequency (in Hz) for first-order high-pass filters implemented in the FPGA on all eight DAC/comparator channels. 

 

void setDacThreshold(int dacChannel, int threshold, bool trigPolarity) 
Sets a threshold level (0-65535) and trigger polarity for a low-latency FPGA threshold comparator on a DAC channel (0-7).  The 
threshold parameter corresponds to the RHD chip ADC output value, where the ‘zero’ level is 32768 and the step size is 0.195 
μV.  If the trigger polarity is set to true, RHD signals equaling or rising above the threshold produce a high digital output.  If the 
trigger polarity is set to false, RHD signals equaling for falling below the threshold produce a high digital output.  If the 
corresponding DAC is disabled, the digital output will always be low. 

 

void enableExternalFastSettle(bool enable) 
Enables or disables real-time control of amplifier fast settle from an external digital input. 

 

void setExternalFastSettleChannel(int channel) 
Selects external TTL digital input channel (0-15) used to control amplifier fast settle function. 

 

void enableExternalDigOut(BoardPort port, bool enable) 
Enables or disables real-time control of auxiliary digital output pin (auxout) on RHD chips on a selected SPI port from an external 
digital input. 

 

void setExternalDigOutChannel(BoardPort port, int channel) 
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Selects external TTL digital input channel (0-15) used to control the auxiliary digital output pin (auxout) on RHD chips on a 
selected SPI port. 

 

void flush() 
Flush all remaining data out of the FIFO.  (This function should only be called when SPI data acquisition has been stopped.) 

 

bool readDataBlock(RHXDataBlock* dataBlock) 
Reads a data block from the USB interface and stores the data into an RHXDataBlock object dataBlock.  Returns true if data 
block was available. 

 

long readDataBlocksRaw(int numBlocks, uint8_t* buffer) 
Reads certain number of USB data blocks, if the specified number is available, and writes the raw bytes to a buffer.  Returns 
the total number of bytes read. 

 

bool readDataBlocks(int numBlocks, deque<RHXDataBlock*> &dataQueue) 
Reads a specified number of data blocks from the USB interface and appends them to a queue.  Returns true if the requested 
number of data blocks were available. 

 

int queueToFile(deque<RHXDataBlock*> &dataQueue, ofstream &saveOut) 
Writes the contents of a data block queue to a binary output stream.  Returns number of data blocks appended to queue. 

 

static int getBoardMode(okCFrontPanel* dev_) 
int getBoardMode() 

Reads four digital input pins on the FPGA (see MC1 I/O Connections section) and returns this as an integer.  These pins will 
typically be hard-wired either high or low to encode a 4-bit number that identifies particular properties of the interface board.  
The static version of this method also requires a pointer to the okCFrontPanel device.  This is typically used to read the board 
mode from the Controller and set an internal software variable, which is then reported with the boardMode() method. 

 

int getNumSPIPorts(bool &expanderBoardDetected) 
static int getNumSPIPorts(okCFrontPanel* dev_, bool isUSB3, bool &expanderBoardDetected, bool isRHS7310) 

Reads four digital input pins on the FPGA (see MC1 I/O Connections section) and returns this as an integer.  These pins will 
typically be hard-wired either high or low to encode a 4-bit number that identifies particular properties of the interface board.  
Sets expanderBoardConnected if the FPGA detects an I/O Expander.  The static version of this method also requires a pointer 
to the okCFrontPanel device and boolean input isRHS7310 which should always be set false for the RHD XEM7130 Interface. 

 

void enableDacReref(bool enabled) 
Enables or disables DAC re-referencing, where a selected amplifier channel is subtracted from all DACs in real time. 

 

void setDacRerefSource(int stream, int channel) 
Selects an amplifier channel from a particular data stream to be subtracted from all DAC signals. 
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StreamChannelPair streamChannelFromWaveName(const string &waveName) 
Returns the stream and channel number within that stream required to access an amplifier or auxiliary analog input specified by 
the string waveName.  

Amplifier channels are specified as follows: “A-000”, “C-127”, “H-031”, etc.  The first letter is a port designation (A-H in the 1024-
channel Recording Controller; A-D in the 512-channel Recording Controller), followed by a hyphen, followed by a three-digit 
channel number ranging from 000-127 in RHD systems.  

Auxiliary input channels are specified as follows: “A-AUX1”, “C-AUX6”, “H-AUX2”, etc.  The first letter is a port designation, 
followed by a hyphen, followed by “AUX” and a number ranging from 1-6.  Auxiliary waveNames return a valid stream number, 
but channel = -1 since three auxiliary inputs share the same channel. 

StreamChannelPair is a struct containing { int stream; int channel; }  Invalid waveNames return stream = -1, channel = -1. 

 

int pipeReadError() 
Returns the Opal Kelly error code (see okFrontPanel.h for details) when a read from a BTPipeOut fails, often attributed to 
connection or interference problems on USB. 

 

RHXRegisters Class Reference 
This class creates and manages a data structure representing the internal RAM registers on an RHD chip, and generates command 
lists to configure the chip and perform other functions.  Changing the value of variables within an instance of this class does not 
directly affect an RHD chip connected to the FPGA; rather, a command list must be generated from this class and then downloaded 
to the FPGA board using RHXController::uploadCommandList.  Typically, one instance of RHXRegisters will be created for 
each RHD chip attached to the Rhythm USB-7310 interface.  However, if all chips will receive the same MOSI commands, then 
only one instance of RHXRegisters is required. 

The public member functions of the RHXRegisters class are listed below. 

 

RHXRegisters(ControllerType type_, double sampleRate_, StimStepSize stimStep_ = StimStepSize500nA) 
Constructor.  Sets RHD register variables to default values.  stimStep_ is unused by the RHD XEM7310 Interface (only used for 
Stim controllers), and can be left at the default value. 

 

void setFastSettle(bool enabled) 
Enables or disables amplifier fast settle function. 

 

void setDigOutLow(DigOut pin = DigOut1) 
void setDigOutHigh(DigOut pin = DigOut1) 
void setDigiOutHiZ(DigOut pin = DigOut1) 

Sets the auxiliary digital output variable to indicate a low, high, or high impedance (HiZ) output.  RHD chips only have a single 
output pin, so only the default value of DigOut1 should be used for the RHD XEM7310 Interface. 

 

void enableAux1(bool enabled) 
void enableAux2(bool enabled) 
void enableAux3(bool enabled) 
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Enables or disables ADC auxiliary inputs 1, 2, and 3. 

 

void enableDsp(bool enabled) 
Enables or disables DSP offset removal filter. 

 

double setDspCutoffFreq(double newDspCutoffFreq) 
Sets the DSP offset removal filter cutoff frequency as closely to the requested newDspCutoffFreq (in Hz) as possible; returns 
the actual cutoff frequency (in Hz). 

 

double getDspCutoffFreq() 
Returns the current value of the DSP offset removal cutoff frequency (in Hz). 

 

void enableZcheck(bool enabled) 
Enables or disables impedance checking mode. 

 

void setZcheckDacPower(bool enabled) 
Powers up or down impedance testing DAC. 

 

void setZcheckScale(ZcheckCs scale) 
Selects the series capacitor CS used to convert the voltage waveform generated by the on-chip DAC into an AC current waveform 
that stimulates a selected electrode for impedance testing.  The capacitor is specified using the ZCheckCs enumeration; defined 
values are: 

 ZcheckCs100fF 
 ZcheckCs1pF 
 ZcheckCs10pF 

 

void setZcheckPolarity(ZcheckPolarity polarity) 
Selects impedance testing of positive or negative amplifier inputs (RHD2216 only), specified using the ZcheckPolarity 
enumeration; defined values are: 

 ZcheckPositiveInput 
 ZcheckNegativeInput 

 

int setZcheckChannel(int channel) 
Selects the amplifier channel (0-63) for impedance testing. 

 

void setAmpPowered(int channel, bool powered) 
void powerUpAllAmps() 
void powerDownAllAmps() 

Powers up or down selected amplifiers on RHD chip. 
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int getRegisterValue(int reg) 
Returns the value of a selected RHD RAM register (0-21), based on the current register variables in the class instance. 

 

double setUpperBandwidth(double upperBandwidth) 
double setLowerBandwidth(double lowerBandwidth, int select = 0) 

Sets the on-chip RH1, RH2, and RL DAC values appropriately to set a particular amplifier bandwidth (in Hz).  Returns an estimate 
of the actual bandwidth achieved.  For RHD chips, the default value of select = 0 should be used. 

 
unsigned int createRHXCommand(RHXCommandType commandType) 
unsigned int createRHXCommand(RHXCommandType commandType, unsigned int arg1) 
unsigned int createRHXCommand(RHXCommandType commandType, unsigned int arg1, unsigned int arg2) 

Returns a 16-bit MOSI command based on the RHXCommandType enumeration; defined values are: 

 RHXCommandConvert 
 RHXCommandCalibrate 
 RHXCommandCalClear 
 RHXCommandRegWrite 

RHXCommandRegRead 
 RHXCommandComplianceReset (RHS only) 

CONVERT and READ commands use arg1 to specify a register or channel; WRITE commands use arg1 and arg2 to specify a 
register and value, respectively. A fourth overload of this method that includes parameters “unsigned int uFlag’ and “unsigned 
int mFlag” should only be used with RHS chips, and can be ignored with an RHD XEM7310 interface. 

 
int createCommandListRHDRegisterConfig(vector<unsigned int> &commandList, bool calibrate, int numCommands) 

Creates a list of numCommands commands to program most RAM registers on an RHD chip, read those values back to confirm 
programming, read ROM registers, and (if calibrate == true) run ADC calibration.  Returns the length of the command list; 
numCommands must be 60 or greater. 

 

int createCommandListRHDSampleAuxIns(vector<unsigned int> &commandList, bool calibrate, int numCommands) 
Creates a list of numCommands commands to sample auxiliary ADC inputs 1-3 at 1/4 the amplifier sampling rate.  The reading 
of  a ROM register is interleaved to allow for data frame alignment.  Return the length of the command list; numCommands 
should be evenly divisible by four. 

 

int createCommandListZcheckDac(vector<unsigned int> &commandList, double frequency, double amplitude) 
Creates a list of up to 1024 commands to generate a sine wave of particular frequency (in Hz) and amplitude (in DAC steps, 0-
128) using the on-chip impedance testing voltage DAC.  If frequency is set to zero, a DC baseline waveform is created, which 
can be used when impedance testing is disabled to minimize on-chip noise.  This function returns the length of the command 
list. 

 

int createCommandListRHDUpdateDigOut(vector<unsigned int> &commandList, int numCommands) 
Creates a list of numCommands commands to update Register 3 (controlling the auxiliary digital output pin) every sampling 
period.  This function returns the length of the command list. 
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int createCommandListDummy(vector<unsigned int> &commandList, int n, unsigned int cmd) 

Creates a list of dummy commands with a specific command.  Returns the length of the command list (which should be n). 
 
vector<double> getDspFreqTable() 
static vector<double> getDspFreqTable(double sampleRate_) 

Returns a size-16 vector containing all possible cutoff frequencies for the on-chip DSP offset removal filter (a one-pole highpass 
filter). The static function requires the system’s sample rate as an input parameter. 

 
int maxCommandLength() 
static int maxCommandLength(ControllerType type) 

Returns size of on-FPGA auxiliary command RAM banks.  For all RHD interfaces, this returns 1024. 

 

int maxNumChannelsPerChip() 
static int maxNumChannelsPerChip(ControllerType type) 

Returns maximum number of amplifier channels per chip.  For all RHD interfaces, this returns 64. 
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RHXDataBlock Class Reference 
This class creates a data structure storing 128 data samples from a Rhythm USB-7310 FPGA interface controlling up to 16 RHD 
chips.  Typically, instances of RHXDataBlock will be created dynamically as data becomes available over the USB interface and 
appended to a queue that will be used to stream the data to disk or to a GUI display. 

The public member functions of the RHXDataBlock class are listed below. 

 

RHXDataBlock(ControllerType type_, int numDataStreams_) 
RHXDataBlock(const RHXDataBlock &obj) 

Constructor.  Allocates memory for a data block supporting the specified number of data streams. 

 

~RHXDataBlock() 
Destructor. 

 

int samplesPerDataBlock() 
static int samplesPerDataBlock(ControllerType type_) 

Returns the number of samples in a single data block, which is always 128. 

 

static unsigned int dataBlockSizeInWords(ControllerType type_, int numDataStreams_) 
unsigned int dataBlockSizeInWords() 

Returns the size of a USB data block (in 16-bit words) when numDataStreams data streams (0-32) are enabled. 

 

void fillFromUsbBuffer(uint8_t* usbBuffer, int blockIndex) 
Fills the data block with raw data from the nth data block in a USB input buffer in an RHXController object.  Setting blockIndex 
to 0 selects the first data block in the buffer, setting blockIndex to 1 selects the second data block, etc. 

 

void print(int stream) 
Prints the contents of RHX registers from a selected USB data stream (0-31) to the console.  This function assumes that the 
command string generated by RHXRegisters::createCommandListRHDRegisterConfig has been uploaded to the AuxCmd3 
slot. 

 

static bool checkUsbHeader(const uint8_t* usbBuffer, int index, ControllerType type_) 
bool checkUsbHeader(const uint8_t* usbBuffer, int index) 

Checks the first 64 bits of USB header against the fixed Rhythm USB-7310 “magic number” to verify proper data synchrony. 

 

void write(ofstream &saveOut, int numDataStreams) 
Writes the contents of a data block object to a binary output stream in little endian format (i.e., least significant byte first). 

 

uint32_t timeStamp(int t) 



RHD XEM7310 Interface: Rhythm USB-7310 

 

                                  www.intantech.com  ●  support@intantech.com 41 
 

 

intan 
TECHNOLOGIES, LLC 

Returns the timestamp at index t (0-127) of this data block. 

 

int amplifierData(int stream, int channel, int t) 
Returns a single sample of amplifier data from the specified channel (0-31) on the specific stream (0-31), corresponding to the 
timestamp at index t (0-127) of this data block. 

 

int auxiliaryData(int stream, int channel, int t) 
Returns a single sample of auxiliary data from the specified channel (0-2) on the specific stream (0-31), corresponding to the 
timestamp at index t (0-127) of this data block. 

 

int boardAdcData(int channel, int t) 
Returns a single sample of Analog Input data from the specified on-board ADC channel (0-7), corresponding to the timestamp 
at index t (0-127) of this data block. 

 

int ttlIn(int channel, int t) 
Returns a single sample of TTL Input data from the specified on-board Digital Input channel (0-15), corresponding to the 
timestamp at index t (0-127) of this data block.  Values are 1 (TTL high) or 0 (TTL low). 

 

int ttlOut(int channel, int t) 
Returns a single sample of TTL Output data from the specified on-board Digital Output channel (0-15), corresponding to the 
timestamp at index t (0-127) of this data block.  Values are 1 (TTL high) or 0 (TTL low). 

 

static int blocksFor30Hz(AmplifierSampleRate rate) 
Returns the number of RHX data blocks that should be read over the USB interface each time for an approximate USB read 
rate of 30 Hz. 

 

static int maxChannelsPerStream() 
Returns the maximum number of amplifier channels that can be present per data stream.  For all RHD interfaces, this returns 
32. 

 
static int channelsPerStream(ControllerType type_) 
int channelsPerStream() 

Returns the number of amplifier channels that are present per data stream.  For all RHD interfaces, this returns 32. 

 
static int numAuxChannels(ControllerType type_) 
int numAuxChannels() 

Returns the number of auxiliary channels that are present per data stream.  For all RHD interfaces, this returns 3. 

 

int getChipID(int stream, int auxCmdSlot, int &register59Value) 
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Returns this chip’s ID (-1 for no chip, 1 for RHD2132, 2 for RHD2216, 4 for RHD2164, 1000 for RHD2164MISOB).  This assumes 
that a command list created by RHXRegisters::createCommandListRHDRegisterConfig has been uploaded and run, and the 
resulting RHXDataBlock read first. 

 

static uint64_t headerMagicNumber(ControllerType type_) 
uint64_t headerMagicNumber() 

Returns the RHD header magic number.  For the RHD XEM7310 interface, this is 0xd7a22aaa38132a53. 

 

  



RHD XEM7310 Interface: Rhythm USB-7310 

 

                                  www.intantech.com  ●  support@intantech.com 43 
 

 

intan 
TECHNOLOGIES, LLC 

 

Example Usage 
A simple main.cpp C++ program presented below opens an Opal Kelly XEM7310 board, configures it with the Rhythm USB-7310 
FPGA configuration bitfile (ConfigRHDController_7310.bit), and sets the clock generator for a 20 kS/s/channel sampling rate.  The 
MISO sampling delay is set for a 3-foot cable.  The program then modifies the default values of the RHD registers, generates 
command sequences for the three auxiliary command slots, and uploads these commands to the FPGA RAM banks.  Two versions 
of the AuxCmd3 sequence are created: one runs the ADC calibration, and this is executed once in a 128-sample SPI run.  Register 
data from this brief run is read over the USB interface, and displayed on the console to confirm RHD register settings. 

The other version of the AuxCmd3 sequence does not execute ADC calibration, so this RAM bank is used for the next acquisition, 
which is a one-second run.  Complete data from the one-second acquisition is then saved in binary format to a file on disk. 
 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <queue> 
 
using namespace std; 
 
#include "okFrontPanel.h" 
#include "rhxcontroller.h" 
#include "rhxregisters.h" 
#include "rhxdatablock.h" 
 
int main(int argc, char* argv[]) 
{ 
    // Create RHX Controller with 20 kHz per-amplifier sampling rate. 
    RHXController *rhxController = new RHXController(ControllerRecordUSB3, 
        SampleRate20000Hz); 
 
    // Open the first detected Opal Kelly device, load Rhythm USB-7310 bitfile. 
    vector<string> availableDevices = rhxController->listAvailableDeviceSerials(); 
    rhxController->open(availableDevices[0]); 
 
    // Load Rhythm USB-7310 bitfile and initialize 
    rhxController->uploadFpgaBitfile("ConfigRHDController_7310.bit"); 
    rhxController->initialize(); 
    rhxController->enableDataStream(0, true); 
 
    // We can set the MISO sampling delay which is dependent on the sample rate. 
    // We assume a 3-foot cable. 
    rhxController->setCableLengthFeet(PortA, 3.0); 
 
    // Let's turn one LED on to indicate that the program is running. 
    int ledArray[8] = {1, 0, 0, 0, 0, 0, 0, 0}; 
    rhxController->setLedDisplay(ledArray); 
 
    // Set up an RHX register object. 
    RHXRegisters *chipRegisters = new RHXRegisters(rhxController->getType(), 
                                                   rhxController->getSampleRate()); 
 
    // Create command lists to be uploaded to auxiliary command slots. 
    int commandSequenceLength; 
    vector<unsigned int> commandList; 
 
    // First, let's create a command list for the AuxCmd1 slot.  This command 
    // sequence will create a 1 kHz, full-scale sine wave for impedance testing. 
    commandSequenceLength = chipRegisters->createCommandListZcheckDac(commandList, 
        1000.0, 128.0); 
    rhxController->uploadCommandList(commandList, RHXController::AuxCmd1); 
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    rhxController->selectAuxCommandLength(RHXController::AuxCmd1, 0, 
       commandSequenceLength - 1); 
 
    rhxController->selectAuxCommandBank(PortA, RHXController::AuxCmd1, 0); 
    // rhxController->printCommandList(commandList); // optionally, print command list 
 
    // Next, we'll create a command list for the AuxCmd2 slot.  This command sequence 
    // will sample auxiliary ADC inputs. 
    commandSequenceLength = 
        chipRegisters->createCommandListRHDSampleAuxIns(commandList, 128); 
    rhxController->uploadCommandList(commandList, RHXController::AuxCmd2); 
    rhxController->selectAuxCommandLength(RHXController::AuxCmd2, 0, 
        commandSequenceLength - 1); 
    rhxController->selectAuxCommandBank(PortA, RHXController::AuxCmd2, 0); 
    // rhxController->printCommandList(commandList); // optionally, print command list 
 
    // For the AuxCmd3 slot, we will create two command sequences.  Both sequences 
    // will configure and read back the RHD chip registers, but one sequence will 
    // also run ADC calibration. 
 
    // Before generating register configuration command sequences, set amplifier 
    // bandwidth parameters. 
 
    double dspCutoffFreq; 
    dspCutoffFreq = chipRegisters->setDspCutoffFreq(10.0);  // 10 Hz DSP cutoff 
    cout << "Actual DSP cutoff frequency: " << dspCutoffFreq << " Hz" << endl; 
 
    chipRegisters->setLowerBandwidth(1.0);       // 1.0 Hz lower bandwidth 
    chipRegisters->setUpperBandwidth(7500.0);    // 7.5 kHz upper bandwidth 
 
    commandSequenceLength = 
        chipRegisters->createCommandListRHDRegisterConfig(commandList, false, 128); 
    // Upload version with no ADC calibration to AuxCmd3 RAM Bank 0. 
    rhxController->uploadCommandList(commandList, RHXController::AuxCmd3, 0); 
 
    chipRegisters->createCommandListRHDRegisterConfig(commandList, true, 128); 
    // Upload version with ADC calibration to AuxCmd3 RAM Bank 1. 
    rhxController->uploadCommandList(commandList, RHXController::AuxCmd3, 1); 
    rhxController->selectAuxCommandLength(RHXController::AuxCmd3, 0, 
        commandSequenceLength - 1); 
    // Select RAM Bank 1 for AuxCmd3 initially, so the ADC is calibrated. 
    rhxController->selectAuxCommandBank(PortA, RHXController::AuxCmd3, 1); 
    // rhxController->printCommandList(commandList); // optionally, print command list 
 
    // Since our longest command sequence is 128 commands, let’s just run the SPI 
    // interface for 128 samples. 
    rhxController->setMaxTimeStep(128); 
    rhxController->setContinuousRunMode(false); 
 
    // Start SPI interface. 
    rhxController->run(); 
    //  Wait for the 128-sample run to complete. 
    while (rhxController->isRunning()) { } 
 
    // Read the resulting single data block from the USB interface. 
    RHXDataBlock *dataBlock = 
        new RHXDataBlock(rhxController->getType(), 
                         rhxController->getNumEnabledDataStreams()); 
    rhxController->readDataBlock(dataBlock); 
 
    // Display register contents from data stream 0. 
    dataBlock->print(0); 
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    // Now that ADC calibration has been performed, we switch to the command sequence 
    // that does not execute ADC calibration. 
    rhxController->selectAuxCommandBank(PortA, RHXController::AuxCmd3, 0); 
 
    // Let's save one second of data to a binary file on disk. 
    ofstream saveOut; 
    saveOut.open("binary_save_file.dat", ios::binary | ios::out); 
 
    deque<RHXDataBlock*> dataQueue; 
 
    // Run for one second. 
    rhxController->setMaxTimeStep(20000); 
    rhxController->run(); 
 
    bool usbDataRead; 
    do { 
        usbDataRead = rhxController->readDataBlocks(1, dataQueue); 
        if (dataQueue.size() >= 50) {   // save 50 data blocks at a time 
            rhxController->queueToFile(dataQueue, saveOut); 
        } 
    } while (usbDataRead || rhxController->isRunning()); 
 
    rhxController->queueToFile(dataQueue, saveOut); 
 
    saveOut.close(); 
 
    // Turn off LED. 
    ledArray[0] = 0; 
    rhxController->setLedDisplay(ledArray); 
 
    delete dataBlock; 
    delete chipRegisters; 
    delete rhxController; 
 
    return 0; 
} 
 

An elaborated version of this main.cpp program file is included with the Rhythm USB-7310 API distribution files. 
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Reading binary data into MATLAB 
The C++ program above saves data from a single data stream to a binary output file.  The following MATLAB code reads a saved 
file for the case where only one data stream is active: 
 
fid = fopen(filename, 'r'); 
  
s = dir(filename); 
filesize = s.bytes; 
 
% allocate space to read the entire file 
data = zeros(filesize, 1, 'uint8'); 
  
% read the entire file 
data = fread(fid, filesize, 'uint8=>uint8'); 
fclose(fid); 
  
% convert the remaining data from bytes to 2-byte unsigned integers 
data = typecast(data, 'uint16'); 
swapbytes(data); 
 
% convert uint16 datatype to double datatype 
data = double(data); 
 
L = length(data); 
 
data = reshape(data, 46, L/46); 
 
timestamp = data(1,:)'; 
amplifier_data = data(2:33,:)'; 
auxiliary_data = data(34:36,:)'; 
boardADC_data = data(37:44,:)'; 
TTLin = data(45,:)'; 
TTLout = data(46,:)'; 
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Contact Information 
This datasheet is meant to acquaint engineers and scientists 
with the Rhythm USB-7310 interface code developed at 
Intan Technologies.  We value feedback from potential end 
users.  We can discuss your specific needs and suggest a 
solution tailored to your applications. 

For more information, contact Intan Technologies at: 

 
 

 
 
 
www.intantech.com 
support@intantech.com 
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