
RHS Application Note

 www.intantech.com ● support@intantech.com 1

intan
TECHNOLOGIES, LLC

 RHS

 Application Note:

 Data File Formats

7 July 2017; updated 29 April 2022

This application note describes the file formats used by the Intan Stimulation/Recording Controller to save acquired waveforms to
disk. While Intan provides some m-files for reading saved data files into MATLAB, some users may wish to write their own software
to access this information. This document provides the necessary information for parsing these files. The software supports
multiple file format options (selected by clicking the “Select File Format” button), and each of these formats will be described in a
following section.

Data Types
Most of the data types described in this document will be familiar to those with rudimentary programming experience. The following
table summarizes the data types referenced in this document:

NAME DESCRIPTION RANGE

uint16 unsigned 16-bit integer 0 to 65,535

int16 signed 16-bit integer -32,768 to 32,767

uint32 unsigned 32-bit integer 0 to 4,294,967,295

int32 signed 32-bit integer -2,147,483,648 to 2,147,483,647

single 32-bit single-precision floating point number ±3.4 × 10±38 with 7-digit accuracy

double 64-bit double-precision floating point number ±1.7 × 10±308 with 15-digit accuracy

QString length-prefixed Unicode string (see below) 0 to 2,147,483,647 Unicode characters

ASCII String ASCII unsigned 8-bit char array ending with 0 No length limit

Name Array ASCII unsigned 8-bit char array Exactly 5 characters

All numbers are saved to disk with “little endian” byte order. That is, the least-significant byte is written first and the most-significant
byte is written last. MATLAB reads data in little endian format by default.

Some text fields are not stored as null-terminated strings as is common in the C family of languages. Rather, they are stored as
length-prefixed strings using the QString style from the open-source Qt framework for C++. In the QString format, each string
begins with a 32-bit unsigned number (uint32) that indicates the length of the string, in bytes. If this number equals 0xFFFFFFFF,
the string is null. A series of 16-bit (2-byte) Unicode characters follows, and there is no special character to indicate the end of the
string.

intan
TECHNOLOGIES, LLC

RHS Application Note

 www.intantech.com ● support@intantech.com 2

intan
TECHNOLOGIES, LLC

The following MATLAB function reads a QString from a file identifier fid and translates it into a MATLAB-format string a:

function a = fread_QString(fid)

a = '';

length = fread(fid, 1, 'uint32');

if length == hex2num('ffffffff')

 return;

end

length = length / 2; % convert length from bytes to 16-bit Unicode words

for i = 1:length

 a(i) = fread(fid, 1, 'uint16');

end

return

Standard Intan RHS Header
All Intan RHS data file formats make use of the Standard Intan RHS Header which is described in this section. This header
contains records of sampling rate, amplifier bandwidth, channel names, and other useful information.

Each file containing a Standard Intan RHS header has a filename ending with the .rhs prefix. These are binary files that begin with
the following file type and version information.

DATA TYPE NAME DESCRIPTION

uint32 Intan RHS Header identifier This “magic number” always has a value of 0xD69127AC to indicate a
traditional Standard Intan RHS Header.

int16 Data file main version number These two integers indicate the version of the data file (e.g., v1.2
would be encoded by a 1 followed by a 2). int16 Data file secondary version number

Next is a block of data containing global sampling rate and amplifier frequency parameters.

single Sample rate Amplifier sample rate (units: Samples/s).

int16 DSP enabled? 0: DSP offset removal high-pass filter was disabled.
1: DSP offset removal high-pass filter was enabled.

single Actual DSP cutoff frequency DSP offset removal high-pass filter cutoff frequency (units: Hz).

single Actual lower bandwidth Amplifier analog high-pass filter cutoff frequency (units: Hz).

single Actual lower settle bandwidth Low cutoff frequency for amplifier settle (units: Hz).

single Actual upper bandwidth Amplifier analog low-pass filter cutoff frequency (units: Hz).

single Desired DSP cutoff frequency User-requested DSP offset removal filter cutoff frequency (units: Hz).

single Desired lower bandwidth User-requested amplifier high-pass filter cutoff frequency (units: Hz).

single Desired lower settle bandwidth User-requested low cutoff frequency for amplifier settle (units: Hz).

single Desired upper bandwidth User-requested amplifier low-pass filter cutoff frequency (units: Hz).

The RHS2116 chips are not always capable of achieving the precise cutoff frequencies specified by the user, so both the values
requested in the GUI and the actual values realized on the chip are saved.

The next parameter records the state of the software-implemented 50/60 Hz notch filter in the GUI during recording. This notch
filter is never applied to saved data, but this information may be used to re-apply the notch filter to recorded data, if desired. (The
m-file read_Intan_RHS2000_file.m re-implements this notch filter on amplifier data that was saved with the filter enabled.)

int16 Notch filter mode 0: Software notch filter was disabled.
1: Software notch filter was enabled and set to 50 Hz.
2: Software notch filter was enabled and set to 60 Hz.

RHS Application Note

 www.intantech.com ● support@intantech.com 3

intan
TECHNOLOGIES, LLC

Next are two floating-point numbers indicating the latest user-requested electrode impedance test frequency and the impedance
test frequency actually realized on the RHS chip.

single Desired impedance test frequency Electrode impedance test frequency last requested by user (units: Hz).

single Actual impedance test frequency Closest realizable electrode impedance test frequency (units: Hz).

Next are entries indicating the state of amp settle and charge recovery modes, which can improve stimulation recovery time.

int16 Amp settle mode 0: Switch lower bandwidth.
1: Traditional fast settle.

int16 Charge recovery mode 0: Current-limited charge recovery circuit.
1: Charge recovery switch.

Next are three floating-point numbers indicating the stimulation step size, maximum current supplied by the current-limited charge
recovery circuit, and voltage to be used by the current-limited charge recovery circuits.

single Stim step size Step size of the 8-bit current-output DACs in each on-chip stimulator
(units: A).

single Charge recovery current limit Maximum current supplied (per channel) by current-limited charge
recovery circuit (units: A).

single Charge recovery target voltage Output voltage of an 8-bit DAC used to generate a voltage in the range
of -1.225V to +1.215V used by current-limited charge recovery circuits
(units: V).

In the “Configure” tab of the Intan GUI, there are three general-purpose text fields that may be used to enter notes on particular
recording sessions. The contents of these text fields are saved here.

QString Note 1 User text from the “Note 1” field in the “Configure” tab in the GUI.

QString Note 2 User text from the “Note 2” field in the “Configure” tab in the GUI.

QString Note 3 User text from the “Note 3” field in the “Configure” tab in the GUI.

Next is a variable indicating whether or not the DC amplifier data of all enabled amplifiers are saved.

int16 DC amplifier data saved 0: DC amplifier data of all enabled channels are not saved.
1: DC amplifier data of all enabled channels are saved.

Next is the “board mode”. This integer is set by hardware, and should always be 14 for the Intan Stim/Record Controller.

int16 Board mode Integer ranging from 0-15 indicating global properties of the hardware
used to acquire the data. 14 corresponds to the Intan Stim/Record
Controller.

Next is the name of the channel used for digital re-referencing. The waveform from this channel may be added to other amplifier
channels to undo the effects of digital re-referencing, if desired. If hardware referencing was selected, this string is set to “n/a”.

QString Reference channel name Native channel name of the channel used as digital reference (e.g.,
“A-001” or “C-027”. If hardware referencing was selected, this string is
set to “n/a”.

RHS Application Note

 www.intantech.com ● support@intantech.com 4

intan
TECHNOLOGIES, LLC

The next number indicates the number of “signal groups” present in the data file. This number is typically equal to eight: Port A,
Port B, Port C, Port D, Board ADC Inputs, Board Digital Inputs, Board DAC Outputs, and Board Digital Outputs.

int16 Number of signal groups in data file Each “signal group” includes all signals from a particular SPI port or
the board analog or digital inputs or outputs. There will typically be
eight signal groups representing the eight items listed under “Ports” in
the GUI.

For each signal group, the following “signal group header” is saved, along with a description of each channel in the signal group.

QString Signal group name e.g., “Port B” or “Board Digital Inputs”.

QString Signal group prefix e.g., “B” or “DIN”.

int16 Signal group enabled? 0: disabled.
1: enabled.

int16 Number of channels in signal group Total number of channels in signal group.

int16 Number of amplifier channels in
signal group

Of the total number of channels in the signal group, the number that
are amplifier channels.

 List of channels See below

Immediately following a signal group (before the remaining signal group headers) is a list of channel descriptions. If a signal group
is enabled and has more than zero channels, then for each channel the following information is saved.

QString Native channel name e.g., “B-013” or “DIN-15”.

QString Custom channel name e.g., “MyTetrode3-4” or “TTLSensor” renamed by user.

int16 Native order The original numerical order of this channel in the GUI display (e.g.,
the native order of amplifier channel B-013 is 13).

int16 Custom order The numerical order of this channel as it appears on the GUI, after
possible reordering by the user.

int16 Signal type 0: RHS2000 amplifier channel.
3: Analog input channel.
4: Analog output channel.
5: Digital input channel.
6: Digital output channel.

int16 Channel enabled? 0: channel disabled.
1: channel enabled.

int16 Chip channel RHS2000 channel number (0-15).

int16 Command stream USB board data stream (0-7); each data stream supports up to 16
channels. Each RHS2216 chip uses an entire data stream.

int16 Board stream USB board data stream (0-7); each data stream supports up to 16
channels. Each RHS2216 chip uses an entire data stream.

int16 Spike Scope voltage trigger mode 0: trigger on digital input.
1: trigger on voltage threshold.

int16 Spike Scope voltage threshold Spike voltage threshold (units: microvolts).

int16 Spike Scope digital trigger channel USB board digital input channel used for spike trigger (0-15).

int16 Spike Scope digital edge polarity 0: trigger on digital falling edge.
1: trigger on digital rising edge.

single Electrode impedance magnitude Last measured impedance magnitude (units: Ohms).

single Electrode impedance phase Last measured impedance phase (units: degrees).

RHS Application Note

 www.intantech.com ● support@intantech.com 5

intan
TECHNOLOGIES, LLC

Even non-amplifier channels will contain fields for Spike Scope trigger parameters and electrode impedance data, but these fields
will contain default values that may be ignored.

The Spike Scope feature in the GUI is used only to aid in viewing neural spikes; the software saves full waveforms, not just spikes.
However, the user-specified thresholds set in the Spike Scope are saved for each channel, so it would be relatively easy to write
a script to isolate action potentials based on these thresholds (e.g., for compressing saved data files after recording).

This concludes the Standard Intan RHS Header contents. Typical headers consume very little disk space (a few KB) even for
large numbers of enabled channels.

Traditional Intan File Format
This file format saves all types of waveforms (RHS2000 amplifier channels, including stimulation current if stimulation was enabled,
and DC amplifier channels, if DC amplifier data were selected to be saved, analog inputs and outputs, and digital inputs and
outputs) to one file, along with the Standard Intan RHS Header described above. Only enabled channels of each type are saved.
To keep individual file size reasonable, a new file is created every N minutes, where N is an integer that is specified by the user.
New filenames are created by appending a date and time stamp to a base filename provided by the user. Each file contains both
a Standard Intan RHS Header and approximately N minutes of saved data. These .rhs data files may be read into MATLAB using
read_Intan_RHS2000_file.m, which is provided on the Intan Technologies web site.

Immediately following the Standard Intan RHS Header in each data file is the waveform data. The traditional Intan file format saves
waveforms in “data blocks” corresponding to the Rhs2000DataBlock object in the C++ code. Each data block contains data from
128 amplifier samples.

Each data block is organized as follows:

128 × int32 Amplifier sample time index Sequential integers (e.g., 0, 1, 2, 3…) with zero marking the beginning
of a recording or a trigger point. Time indices can be negative to
denote pre-trigger times. Divide by the amplifier sampling rate (in
Samples/s) to get a time vector with units of seconds.

The use of an int32 data type means that this number will not “roll
over” until total recording times exceed 19.8 hours with the maximum
sample rate of max sample rate 30 kS/s, or 29.8 hours with a sample
rate of 20 kS/s.

For each enabled RHS2000 amplifier channel, 128 ADC samples:

128 × uint16 Electrode voltage Units: ADC steps. To convert to electrode voltage in microvolts, first
subtract 32768 then multiply by 0.195.

If ‘DC amp data’ saved from the header is 1, for each enabled RHS2000 amplifier channel, 128 ADC samples. If ‘DC amp data
saved’ is 0, this data is not present.

128 × uint16 DC amplifier voltage Units: ADC steps. To convert to DC voltage in millivolts, first subtract
512 then multiply by 19.23.

For each enabled RHS2000 amplifier channel, 128 stimulation data words:

128 × uint16 Stimulation data Stimulation current is stored in lower 9 bits. Units: ‘Stim Step Size’, set
in header file. To convert to current in amps, multiply lowest 8 bits by
‘Stim Step Size’. Then, for each 16-bit unsigned integer entry, if the 9th
bit is 1 (signifying a negative current), multiply the magnitude by -1.

Bit 16 (the MSB) indicates a compliance limit was reached. Bit 15 is
one if charge recovery is activated. Bit 14 is one if amplifier settle is
activated. Bits 10-13 are unused and always zero.

RHS Application Note

 www.intantech.com ● support@intantech.com 6

intan
TECHNOLOGIES, LLC

For each board ADC channel, 128 samples:

128 × uint16 Board ADC input voltage Units: ADC steps. To convert to volts, subtract 32768 and multiply by
0.0003125.

For each board DAC channel, 128 samples:

128 × uint16 Board DAC output voltage Units: DAC steps. To convert to volts, subtract 32768 and multiply by
0.0003125.

If any board digital inputs are enabled, unsigned 16-bit integers record 128 samples from all digital inputs 0-15. If no digital inputs
are enabled, these samples are not recorded.

128 × uint16 Board digital inputs All 16 digital inputs are encoded bit-by-bit in each 16-bit word. For
example, if digital inputs 0, 4, and 5 are high and the rest low, the
uint16 value for this sample time will be 20 + 24 + 25 = 1 + 16 + 32 =
49.

For each digital output channel, 128 samples:

128 × uint16 Board digital outputs All 16 digital outputs are encoded bit-by-bit in each 16-bit word. For
example, if digital outputs 0, 4, and 5 are high and the rest low, the
uint16 value for this sample time will be 20 + 24 + 25 = 1 + 16 + 32 =
49.

The m-file read_Intan_RHS2000_file.m includes code to extract the bit-by-bit information from these 16-bit words into individual
digital waveforms.

“One File Per Signal Type” Format
This file format creates a subdirectory using the base filename provided, plus a date and time stamp. Global information is saved
in a Standard Intan RHS Header file, and all waveform data is saved in separate raw data files. Although the raw data files are
divided by signal type (i.e., one file for all amplifier channels, one file for all digital outputs, etc.), the file sizes can grow large
quickly: If 64 amplifier channels were recorded at 20 kS/s for one hour, the amplifier data file would be 9.2 GB in size.

The raw data files written in this format are compatible with the NeuroScope open-source software for data viewing and analysis.
(See http://neuroscope.sourceforge.net for more information on this third-party software.)

When using this file format, the following data files are written to the subdirectory:

Standard Intan RHS Header file: info.rhs

This file contains the data listed in the Intan RHS Standard Header described above: sampling rate, amplifier bandwidth, channel
names, and other useful information. The information in this file may be read into MATLAB data structures using
read_Intan_RHS2000_file.m, which is provided on the Intan Technologies web site.

Timestamp data file: time.dat

This file contains int32-type sequential integers (e.g., 0, 1, 2, 3…) corresponding to sample times indices, with zero marking the
beginning of a recording or a trigger point. Time indices can be negative to denote pre-trigger times. Divide by the amplifier
sampling rate (in Samples/s) to get a time vector with units of seconds.

The following MATLAB code reads a timestamp data file and creates a time vector with units of seconds:

fileinfo = dir('time.dat');

num_samples = fileinfo.bytes/4; % int32 = 4 bytes

fid = fopen('time.dat', 'r');

RHS Application Note

 www.intantech.com ● support@intantech.com 7

intan
TECHNOLOGIES, LLC

t = fread(fid, num_samples, 'int32');

fclose(fid);

t = t / frequency_parameters.amplifier_sample_rate; % sample rate from header file

The use of the int32 data type means that this number will not “roll over” until total recording times exceed 19.8 hours with the
maximum sample rate of 30 kS/s, or 29.8 hours with a sample rate of 20 kS/s.

Amplifier data file: amplifier.dat

This file contains a matrix of ADC samples from all enabled RHS2000 amplifier channels in int16 format. For example, if four
amplifier channels are enabled, data will be written in the following order:

amp1(t), amp2(t), amp3(t), amp4(t), amp1(t+1), amp2(t+1), amp3(t+1), amp4(t+1), amp1(t+2), amp2(t+2), …

To convert to electrode voltage in microvolts, multiply by 0.195.

If no amplifier channels are enabled in the GUI, this file will not be written.

The following MATLAB code reads an amplifier data file and creates an electrode voltage matrix with units of microvolts:

num_channels = length(amplifier_channels); % amplifier channel info from header file

fileinfo = dir('amplifier.dat');

num_samples = fileinfo.bytes/(num_channels * 2); % int16 = 2 bytes

fid = fopen('amplifier.dat', 'r');

v = fread(fid, [num_channels, num_samples], 'int16');

fclose(fid);

v = v * 0.195; % convert to microvolts

Board ADC input data file: analogin.dat

This file contains a matrix of ADC samples from the analog inputs on the board, in uint16 format. To convert to volts, subtract
32768 and multiply by 0.0003125.

If no board ADC input channels are enabled in the GUI, this file will not be written.

The following MATLAB code reads a board ADC input data file and creates a waveform matrix with units of volts:

num_channels = length(board_adc_channels); % ADC input info from header file

fileinfo = dir('analogin.dat');

num_samples = fileinfo.bytes/(num_channels * 2); % uint16 = 2 bytes

fid = fopen('analogin.dat', 'r');

v = fread(fid, [num_channels, num_samples], 'uint16');

fclose(fid);

v = (v – 32768) * 0.0003125; % convert to volts

Board DAC output data file: analogout.dat

This file contains a matrix of DAC samples from the analog outputs on the board, in uint16 format. To convert to volts, subtract
32768 and multiply by 0.0003125

If no board DAC output channels are enabled in the GUI, this file will not be written.

The following MATLAB code reads a board ADC input data file and creates a waveform matrix with units of volts:

num_channels = length(board_dac_channels); % DAC output info from header file

fileinfo = dir('analogout.dat');

num_samples = fileinfo.bytes/(num_channels * 2); % uint16 = 2 bytes

fid = fopen('analogout.dat', 'r');

v = fread(fid, [num_channels, num_samples], 'uint16');

fclose(fid);

v = (v – 32768) * 0.0003125; % convert to volts

DC amplifier data file: dcamplifier.dat

This file contains a matrix of ADC samples from the DC amplifier inputs from all enabled RHS2000 amplifier channels, in int16
format. For example, if four amplifier channels are enabled, data will be written in the following order:

RHS Application Note

 www.intantech.com ● support@intantech.com 8

intan
TECHNOLOGIES, LLC

amp1(t), amp2(t), amp3(t), amp4(t), amp1(t+1), amp2(t+1), amp3(t+1), amp4(t+1), amp1(t+2), amp2(t+2), …

To convert to DC voltage in millivolts, first subtract 512 then multiply by 19.23.

If no amplifier channels are enabled in the GUI, or if the “Save DC Amplifier Waveforms” box is not checked in the Select File
Format dialog, this file will not be written.

The following MATLAB code reads a dc amplifier data file and creates a voltage matrix with units of millivolts:

num_channels = length(amplifier_channels); % DC channel info from header file

fileinfo = dir('dcamplifier.dat');

num_samples = fileinfo.bytes/(num_channels * 2); % uint16 = 2 bytes

fid = fopen('dcamplifier.dat', 'r');

v = fread(fid, [num_channels, num_samples], 'uint16');

fclose(fid);

v = (v – 512) * 19.23; % convert to millivolts

Board digital input data file: digitalin.dat

This file contains samples of digital inputs 0-15 on the board, in uint16 format. All 16 digital inputs are encoded bit-by-bit in each
16-bit word. For example, if digital inputs 0, 4, and 5 are high and the rest low, the uint16 value for this sample time will be 20 +
24 + 25 = 1 + 16 + 32 = 49.

If no board digital input channels are enabled in the GUI, this file will not be written. If any Stim/Record Controller digital inputs
are enabled, the uint16 numbers in this file record data from all digital inputs 0-15.

The following MATLAB code reads a board digital input data file and creates vector of 16-bit words:

fileinfo = dir('digitalin.dat');

num_samples = fileinfo.bytes/2; % uint16 = 2 bytes

fid = fopen('digitalin.dat', 'r');

digital_word = fread(fid, num_samples, 'uint16');

fclose(fid);

Board digital output data file: digitalout.dat

This file contains samples of digital outputs 0-15 on the board, in uint16 format. All 16 digital inputs are encoded bit-by-bit in each
16-bit word. For example, if digital outputs 0, 4, and 5 are high and the rest low, the uint16 value for this sample time will be 20 +
24 + 25 = 1 + 16 + 32 = 49.

If the “Save Digital Outputs” box is not checked in the Select File Format dialog, this file will not be written.

The following MATLAB code reads a board digital output data file and creates vector of 16-bit words:

fileinfo = dir('digitalout.dat');

num_samples = fileinfo.bytes/2; % uint16 = 2 bytes

fid = fopen('digitalout.dat', 'r');

digital_word = fread(fid, num_samples, 'uint16');

fclose(fid);

Stimulation output data file: stim.data

This file contains a matrix of stimulation currents applied to all enabled RHS2000 amplifier channels, in uint16 format. For example,
if four amplifier channels are enabled, data will be written in the following order:

stimdata1(t), stimdata2(t), stimdata3(t), stimdata4(t), stimdata1(t+1), stimdata2(t+1), stimdata3(t+1), stimdata4(t+1), …

Stimulation current is stored in lower 9 bits of stimdata. To convert to stimulation current in amps, multiply lowest 8 bits by ‘Stim
Step Size’. Then, for each 16-bit unsigned integer entry, if the 9th bit is 1 (signifying a negative current), multiply the magnitude by
-1.

Bit 16 (the MSB) indicates a compliance limit was reached. Bit 15 is one if charge recovery is activated. Bit 14 is one if amplifier
settle is activated. Bits 10-13 are unused and always zero.

RHS Application Note

 www.intantech.com ● support@intantech.com 9

intan
TECHNOLOGIES, LLC

If no amplifier channels are enabled in the GUI, this file will not be written. The following MATLAB code reads a stim data file and
creates a current matrix with units of Amps:

num_channels = length(amplifier_channels);

fileinfo = dir('stim.dat');

num_samples = fileinfo.bytes/(num_channels * 2); % uint16 = 2 bytes

fid = fopen('stim.dat', 'r');

data = fread(fid, [num_channels, num_samples], 'uint16');

fclose(fid);

i = bitand(data, 255) * stim_parameters.stim_step_size; % current magnitude

sign = (128 – bitand(data, 256))/128; % convert sign bit to 1 or -1

i = i .* sign; % signed current in Amps

Spike data file: spike.dat

This file contains the timestamp and channel name of each spike that has been detected during recording. If snapshots have been
saved, then each spike entry also includes the raw, unscaled data of that spike’s snapshot.

The file begins with a header containing metadata about the recorded data, which is subsequently appended to spike-by-spike for
each spike event that occurs.

Header

DATA TYPE NAME DESCRIPTION

uint32 Intan Spike File identifier This “magic number” always has a value of 0x18F8474B to indicate an
Intan Spike File (saved in One File Per Signal Type format).

uint16 Spike File version number Which version this Spike File format follows

ASCII String Base Filename Base filename of recording session and time/date

ASCII String Native channel names Comma-separated list of all enabled amplifier native channel names

ASCII String Custom channel names Comma-separated list of all enabled amplifier custom channel names

single Sample rate Amplifier sample rate (units: Samples/s)

uint32 Pre-detect samples Number of samples preceding a spike event to include in a snapshot

uint32 Post-detect samples Number of samples following a spike event to include in a snapshot

Individual Spike Data (repeats until the end of the file)

DATA TYPE NAME DESCRIPTION

Name Array Native channel name Which channel this spike occurred on. Note: not null-terminated like the
strings in the header, because this string is always exactly 5 characters

int32 Timestamp Integer timestamp at which this spike occurred, with zero marking the
beginning of the recording. Divide by the amplifier sampling rate (in
Samples/s) to get a time with units of seconds.

uint8 Spike ID With future releases of Intan software, could be expanded to assign a specific
ID to a certain spike type. Currently, any non-zero ID indicates a spike.

If spike snapshots were saved, immediately following a spike’s ID:

DATA TYPE NAME DESCRIPTION

N x uint16 Snapshot electrode voltage Short snapshot of the waveform on which the spike was detected, where N is
‘Pre-detect samples’ + ‘Post-detect samples’. Units: ADC steps. To convert to
electrode voltage in microvolts, first subtract 32768 then multiply by 0.195.

RHS Application Note

 www.intantech.com ● support@intantech.com 10

intan
TECHNOLOGIES, LLC

The following MATLAB function reads a spike data file into a struct array containing each spike’s name, timestamp, spike ID, and
(if saved), snapshot:

function spikes = read_spike_data

total_bytes = dir('spike.dat').bytes;

fid = fopen('spike.dat', 'r');

if fread(fid, 1, 'uint32') ~= 0x18F8474B

 fprintf(1, 'Invalid magic number\n');

 return;

end

version_number = fread(fid, 1, 'uint16');

base_filename = readString(fid, 0);

native_channel_names = readString(fid, 0);

custom_channel_names = readString(fid, 0);

sample_rate = fread(fid, 1, 'single');

pre_detect_samples = fread(fid, 1, 'uint32');

post_detect_samples = fread(fid, 1, 'uint32');

N_snapshot = pre_detect_samples + post_detect_samples;

bytes_remaining = total_bytes - ftell(fid);

spike_struct = struct(...

 'native_channel_name', {}, ...

 'timestamp', {}, ...

 'spike_id', {}, ...

 'snapshot', {});

spikes = struct(spike_struct);

spikes_index = 1;

while bytes_remaining > 0

 spikes(spikes_index).native_channel_name = readString(fid, 5);

 spikes(spikes_index).timestamp = fread(fid, 1, 'int32');

 spikes(spikes_index).spike_id = fread(fid, 1, 'uint8');

 if N_snapshot > 0

 spikes(spikes_index).snapshot = (fread(fid, N_snapshot, 'uint16') ...

 - 32768) * 0.195;

 end

 bytes_remaining = total_bytes - ftell(fid);

 spikes_index = spikes_index + 1;

end

end

% Read a string. For null-terminated strings, num_chars should be 0. For

% known-length string, num_chars should be the length of the string.

function this_str = readString(fid, num_chars)

last_read_byte = 1;

read_bytes = [];

if num_chars == 0

 while last_read_byte ~= 0

 last_read_byte = fread(fid, 1, 'uint8');

 read_bytes = [read_bytes last_read_byte];

 end

 this_str = char(read_bytes(1:end-1));

else

 read_bytes = fread(fid, num_chars, 'uint8')';

 this_str = char(read_bytes);

end

end

RHS Application Note

 www.intantech.com ● support@intantech.com 11

intan
TECHNOLOGIES, LLC

“One File Per Channel” Format
This file format creates a subdirectory using the base filename provided, plus a date and time stamp. The subdirectory contains
separate files for each waveform recorded by the Stim/Record Controller; if 256 amplifier channels are connected to the system,
then 256 individual amplifier data files will be written. This file format has the advantage of maintaining reasonable individual file
sizes even for long recordings (a one-hour recording session at 30 kS/s would generate a 216 MB file for each enabled channel)
while not dividing particular waveforms between multiple files.

When using this file format, the following data files are written to the subdirectory:

Standard Intan RHS Header file: info.rhs

This file contains the data listed in the Intan RHS Standard Header described above: sampling rate, amplifier bandwidth, channel
names, and other useful information. The information in this file may be read into MATLAB data structures using
read_Intan_RHS2000_file.m, which is provided on the Intan Technologies web site.

Timestamp data file: time.dat

This file contains int32-type sequential integers (e.g., 0, 1, 2, 3…) corresponding to sample times indices, with zero marking the
beginning of a recording or a trigger point. Time indices can be negative to denote pre-trigger times. Divide by the amplifier
sampling rate (in Samples/s) to get a time vector with units of seconds.

The following MATLAB code reads a timestamp data file and creates a time vector with units of seconds:

fileinfo = dir('time.dat');

num_samples = fileinfo.bytes/4; % int32 = 4 bytes

fid = fopen('time.dat', 'r');

t = fread(fid, num_samples, 'int32');

fclose(fid);

t = t / frequency_parameters.amplifier_sample_rate; % sample rate from header file

The use of the int32 data type means that this number will not “roll over” until total recording times exceed 19.8 hours with the
maximum sample rate of 30 kS/s, or 29.8 hours with a sample rate of 20 kS/s.

Amplifier data files

Each amplifier data file has a filename that begins with amp followed by the SPI port letter and channel number. For example:
amp-A-000.dat, amp-C-063.dat, or amp-D-027.dat.

Each amplifier data file contains the consecutive ADC samples from one enabled RHS2000 amplifier channel in int16 format. To
convert to electrode voltage in microvolts, multiply by 0.195.

If no amplifier channels are enabled in the GUI, this file will not be written.

The following MATLAB code reads an amplifier data file and creates an electrode voltage vector with units of microvolts:

fileinfo = dir('amp-B-003.dat'); % amplifier channel data

num_samples = fileinfo.bytes/2; % int16 = 2 bytes

fid = fopen('amp-B-003.dat', 'r');

v = fread(fid, num_samples, 'int16');

fclose(fid);

v = v * 0.195; % convert to microvolts

Board ADC input data files

Each board ADC input data file has a filename that begins with board-ANALOG-IN followed by the channel number. For example:
board-ANALOG-IN-1.dat, board-ANALOG-IN-3.dat, or board-ANALOG-IN-6.dat.

Each board ADC input data file contains the consecutive ADC samples from one enabled analog input on the Stim/Record
Controller board, in uint16 format. To convert to volts, subtract 32768 and multiply by 0.0003125.

RHS Application Note

 www.intantech.com ● support@intantech.com 12

intan
TECHNOLOGIES, LLC

If no board ADC input channels are enabled in the GUI, this file will not be written.

The following MATLAB code reads a board ADC data file and creates a waveform vector with units of volts:

fileinfo = dir('board-ANALOG-IN-1.dat'); % ADC input data

num_samples = fileinfo.bytes/2; % uint16 = 2 bytes

fid = fopen('board-ANALOG-IN-1.dat', 'r');

v = fread(fid, num_samples, 'uint16');

fclose(fid);

v = (v – 32768) * 0.0003125; % convert to volts

Board DAC output data files

Each board DAC output data file has a filename that begins with board-ANALOG-OUT followed by the channel number. For
example: board-ANALOG-OUT-1.dat, board-ANALOG-OUT-3.dat, or board-ANALOG-IN-6.dat.

Each board DAC output data file contains the consecutive DAC samples from one enabled analog output on the Stim/Record
Controller board, in uint16 format. To convert to volts, subtract 32768 and multiply by 0.0003125.

If no board DAC output channels are enabled in the GUI, this file will not be written.

The following MATLAB code reads a board DAC data file and creates a waveform vector with units of volts:

fileinfo = dir('board-ANALOG-OUT-1.dat'); % DAC output data

num_samples = fileinfo.bytes/2; % uint16 = 2 bytes

fid = fopen('board-ANALOG-OUT-1.dat', 'r');

v = fread(fid, num_samples, 'uint16');

fclose(fid);

v = (v – 32768) * 0.0003125; % convert to volts

DC amplifier data file: dcamplifier.dat

Each amplifier data has a filename that begins with dc followed by the SPI port letter and channel number. For example: dc-A-
000.dat, dc-B-002.dat, or dc-B-027.dat.

Each amplifier data file contains the consecutive DC samples from one enabled RHS2000 amplifier channel in uint16 format. To
convert to DC voltage in millivolts, first subtract 512 then multiply by 19.23.

If no amplifier channels are enabled in the GUI, or if the “Save DC Amplifier Waveforms” box is not checked in the Select File
Format dialog, these files will not be written.

The following MATLAB code reads a dc amplifier data file and creates a voltage matrix with units of millivolts:

fileinfo = dir('dc-B-000.dat'); % DC channel data

num_samples = fileinfo.bytes/2; % uint16 = 2 bytes

fid = fopen('dc-B-000.dat', 'r');

v = fread(fid, num_samples, 'uint16');

fclose(fid);

v = (v – 512) * 19.23; % convert to millivolts

Board digital input data files

Each board digital input data file has a filename that begins with board-DIGITAL-IN followed by the channel number. For example:
board-DIGITAL-IN-01.dat, board-DIGITAL-IN-03.dat, or board-DIGITAL-IN-06.dat.

If no board digital input channels are enabled in the GUI, this file will not be written. If any Stim/Record Controller digital inputs are
enabled, the uint16 numbers in this file record data from all digital inputs 0-15.

Each board digital input data file contains the consecutive binary samples from one enabled digital input on the board, in uint16
format. Each uint16 value in these files will be equal either to 0 or 1.

The following MATLAB code reads a board digital input data file and creates a waveform vector:

fileinfo = dir('board-DIGITAL-IN-01.dat'); % digital input data

num_samples = fileinfo.bytes/2; % uint16 = 2 bytes

fid = fopen('board-DIGITAL-IN-01.dat', 'r');

din01 = fread(fid, num_samples, 'uint16');

RHS Application Note

 www.intantech.com ● support@intantech.com 13

intan
TECHNOLOGIES, LLC

fclose(fid);

Board digital output data files

Each board digital output data file has a filename that begins with board-DIGITAL-OUT followed by the channel number. For
example: board-DIGITAL-OUT-01.dat, board-DIGITAL-OUT-03.dat, or board-DIGITAL-OUT-06.dat.

If the “Save Digital Outputs” box is not checked in the Select File Format dialog, this file will not be written.

Each board digital output data file contains the consecutive binary samples from one digital output on the board, in uint16 format.
Each uint16 value in these files will be equal either to 0 or 1.

The following MATLAB code reads a board digital output data file and creates a waveform vector:

fileinfo = dir('board-DIGITAL-OUT-01.dat'); % digital output data

num_samples = fileinfo.bytes/2; % uint16 = 2 bytes

fid = fopen('board-DIGITAL-OUT-01.dat', 'r');

dout01 = fread(fid, num_samples, 'uint16');

fclose(fid);

Stimulation output current files

Each stimulation output current file has a filename that begins with stim followed by the SPI port letter and channel number. For
example: stim-A-001.dat, stim-B-003.dat, stim-C-031.dat.

Stimulation current is stored in lower 9 bits of each saved 16-bit word. To convert to stimulation current in amps, multiply lowest
8 bits by ‘Stim Step Size’. Then, for each 16-bit unsigned integer entry, if the 9th bit is 1 (signifying a negative current), multiply
the magnitude by -1.

Bit 16 (the MSB) indicates a compliance limit was reached. Bit 15 is one if charge recovery is activated. Bit 14 is one if amplifier
settle is activated. Bits 10-13 are unused and always zero.

If no amplifier channels are enabled in the GUI, this file will not be written. The following MATLAB code reads a stim data file and
creates a current matrix with units of Amps:

fileinfo = dir('stim-B-001.dat');

num_samples = fileinfo.bytes/2; % uint16 = 2 bytes

fid = fopen('stim-B-001.dat', 'r');

data = fread(fid, num_samples, 'uint16');

fclose(fid);

i = bitand(data, 255) * stim_parameters.stim_step_size; % current magnitude

sign = (128 – bitand(data, 256))/128; % convert sign bit to 1 or -1

i = i .* sign; % signed current in Amps

Spike data files

Each spike data file has a filename that begins with spike followed by the channel number. For example: spike-A-000.dat, spike-
A-001.dat, or spike-B-030.dat.

This file contains the timestamp of each spike on this channel that has been detected during recording. If snapshots have been
saved, then each spike entry also includes the raw, unscaled data of that spike’s snapshot.

The file begins with a header containing metadata about the recorded data, which is subsequently appended to spike-by-spike for
each spike event that occurs on this channel.

Header

DATA TYPE NAME DESCRIPTION

uint32 Intan Spike File identifier This “magic number” always has a value of 0x18F88C00 to indicate an
Intan Spike File (saved in One File Per Channel format).

uint16 Spike File version number Which version this Spike File format follows

ASCII String Base Filename Base filename of recording session and time/date

RHS Application Note

 www.intantech.com ● support@intantech.com 14

intan
TECHNOLOGIES, LLC

ASCII String Native channel name This channel’s native channel name

ASCII String Custom channel name This channel’s custom channel name

single Sample rate Amplifier sample rate (units: Samples/s)

uint32 Pre-detect samples Number of samples preceding a spike event to include in a snapshot

uint32 Post-detect samples Number of samples following a spike event to include in a snapshot

Individual Spike Data (repeats until the end of the file)

DATA TYPE NAME DESCRIPTION

int32 Timestamp Integer timestamp at which this spike occurred, with zero marking the
beginning of the recording. Divide by the amplifier sampling rate (in
Samples/s) to get a time with units of seconds.

uint8 Spike ID With future releases of Intan software, could be expanded to assign a specific
ID to a certain spike type. Currently, any non-zero ID indicates a spike.

If spike snapshots were saved, immediately following a spike’s ID:

DATA TYPE NAME DESCRIPTION

N x uint16 Snapshot electrode voltage Short snapshot of the waveform on which the spike was detected, where N is
‘Pre-detect samples’ + ‘Post-detect samples’. Units: ADC steps. To convert to
electrode voltage in microvolts, first subtract 32768 then multiply by 0.195.

The following MATLAB function reads a single channel’s spike data file into a struct array containing each spike’s timestamp, spike
ID, and (if saved), snapshot:

function spikes = read_spike_data

filename = 'spike-A-000.dat'; % Change this string to read different channels

total_bytes = dir(filename).bytes;

fid = fopen(filename, 'r');

if fread(fid, 1, 'uint32') ~= 0x18F88C00

 fprintf(1, 'Invalid magic number\n');

 return;

end

version_number = fread(fid, 1, 'uint16')

base_filename = readString(fid, 0)

native_name = readString(fid, 0)

custom_name = readString(fid, 0)

sample_rate = fread(fid, 1, 'single')

pre_detect_samples = fread(fid, 1, 'uint32');

post_detect_samples = fread(fid, 1, 'uint32');

N_snapshot = pre_detect_samples + post_detect_samples;

bytes_remaining = total_bytes - ftell(fid);

spike_struct = struct(...

 'timestamp', {}, ...

 'spike_id', {}, ...

 'snapshot', {});

spikes_index = 1;

while bytes_remaining > 0

 spikes(spikes_index).timestamp = fread(fid, 1, 'int32');

 spikes(spikes_index).spike_id = fread(fid, 1, 'uint8');

 if N_snapshot > 0

 spikes(spikes_index).snapshot = (fread(fid, N_snapshot, 'uint16') ...

 - 32768) * 0.195;

 end

 bytes_remaining = total_bytes - ftell(fid);

RHS Application Note

 www.intantech.com ● support@intantech.com 15

intan
TECHNOLOGIES, LLC

 spikes_index = spikes_index + 1;

end

end

% Read a string. For null-terminated strings, num_chars should be 0. For

% known-length string, num_chars should be the length of the string.

function this_str = readString(fid, num_chars)

last_read_byte = 1;

read_bytes = [];

if num_chars == 0

 while last_read_byte ~= 0

 last_read_byte = fread(fid, 1, 'uint8');

 read_bytes = [read_bytes last_read_byte];

 end

else

 read_bytes = fread(fid, num_chars, 'uint8')';

end

this_str = char(read_bytes);

end

Handling Large Data Files
The Intan Stimulation/Recording Controller supports up to 128 amplifier/stimulator channels, plus several other analog and digital
inputs, that may be sampled up to 30 kS/s/channel. This can quickly create enormous data files. The example MATLAB code
shown above reads entire raw data files into memory, but it is also possible to read particular segments of data from a file using
the MATLAB commands fseek, ftell, and frewind to move to specified positions in a file. Then fread may be used to

read a subset of the data in the file beginning at that point. Similar functions are available in C++ and other programming languages.

